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As indicated by its title, this paper outlines some critical issues to consider when applying IRT 

models to health outcomes and behavior data including model assumptions, model fit, and 

sample size requirements.  The focus is on unidimensional parametric IRT models; however, 

multi-dimensional IRT models (Reckase, 1977) and non-parametric IRT models (Ramsay, 1991; 

1995) also exist. Although these models have particular advantages that may make them 

appropriate in some applications, they are less commonly applied to health outcomes data, and 

thus are not discussed in this paper.   

Evaluating assumptions of IRT models 

One important assumption of unidimensional parametric IRT models is that the construct 

being measured is in fact unidimensional; that is, that the covariance among the items can be 

explained by a single underlying dimension.  One way to check this assumption is by examining 

the relative sizes of the eigenvalues associated with a principal components analysis of the item 

set. A general rule of thumb in exploratory factor analyses of this type suggests that a set of 

items may represent as many factors as there are eigenvalues greater than 1 in this analysis 

(Loehlin, 1987). However, a set of items may have multiple eigenvalues greater than 1 and still 

be sufficiently unidimensional for analysis with IRT. A second way to determine the number of 

factors is with a plot of the successive eigenvalues, or a scree plot (Cattell, 1966; 1978; Loehlin, 

1987). Using this, the decision about the number of factors is arrived at based on the point at 

which the curve of decreasing eigenvalues changes from a rapid, decelerating decline to a flat 

gradual slope.  For example, in one IRT application, a principal components analysis of a 30-



item variant of the Center for Epidemiological Studies Depression Scale (CES-D) scale yielded 

five eigenvalues greater than 1. However, the first eigenvalue (13.37) was substantially greater 

than the next four (1.6, 1.5, 1.4, 1.1).  In addition, 29 of the 30 items had standardized factor 

loadings greater than .35, ranging from .28 to .81 with an average of .65. Based on these results, 

the factor structure of the 30 items was deemed sufficiently unidimensional for application of 

IRT (Orlando, Sherbourne, & Thissen, 2001). As implied by this example, the relative size of the 

eigenvalues, as well as the extent and magnitude of the item loadings on the first principal 

component can be taken into consideration when evaluating the unidimensionality assumption 

for IRT applications. Similarly, sets of items that have a second order factor structure (i.e., 

several first order factors all loading onto one general higher order factor) may also meet 

requirements for unidimensionality. In cases where the assumption may be tentative, it is 

important to check the IRT model results for any anomalies that may arise due to violation of 

this assumption (e.g., one or more items with very low item slope parameters). Additionally, if it 

is not appropriate to assume that the item responses are continuous, it is preferable to conduct 

exploratory factor analysis for categorical data.    

 A second assumption of IRT models is that the items display local independence. This is 

technically subsumed under the unidimensionality assumption and requires that, given their 

relationship to the underlying construct being measured, there is no additional systematic 

covariance among the items. Local dependence (LD) can potentially arise among subsets of 

items that have a similar stem (e.g., a set of items that all refer to someone’s experience of 

physical pain), items that have very similar content, or items that are presented sequentially.  

Software to identify LD in dichotomous items does exist (Chen & Thissen, 1997), but it is not 

appropriate for polytomous items.  An alternative way to identify LD is with a confirmatory 



factor analysis. Excess covariation among items in the residual matrix of a single factor CFA 

model can be indicative of LD. Examining this matrix carefully, or looking at the modification 

indices associated with the one-factor solution, can reveal potential LD. It is also useful to 

examine the output from an IRT calibration. Often if there is LD in a pair of items they will have 

inflated slope estimates. This is especially true with short scales. Essentially the LD, if it is 

strong enough, becomes the “definition” of the latent variable, so the two items with the LD have 

very high slopes relative to the other scale items. If this occurs, one item from the pair should be 

removed and the scale should be recalibrated.   

One of the most basic assumptions of the application of parametric IRT models is that the 

model is appropriate for the data. Evaluation of this assumption involves choosing the right 

model and evaluating model fit. These topics are detailed in the following two sections.  

Choosing the right IRT model 

There are several different IRT models to choose from (Thissen and Steinberg, 1986). 

The most commonly used models are listed in the Item Response Theory Models Table in the 

front of the conference notebook.  The first consideration when choosing the right model 

involves the number of item response categories, as this obviously limits the choice of 

appropriate models. For dichotomous items, the 1, 2, and 3 parameter logistic models are 

available (1PLM, 2PLM, 3PLM). For polytomous items, variations of the Partial Credit Model 

(PCM, Masters, 1982; RSM, Andrich, 1978a, 1978b; GPCM, Muraki, 1992, 1997) as well as the 

Graded Response Model (GRM, Samejima, 1969, 1997) are available for ordered responses, and 

the Nominal Model (Bock, 1972) is appropriate for items with a non-specified response order.  

Members of the Rasch (1960) family of models are indicated in the Item Response 

Theory Models Table with an asterisk. The distinguishing characteristic of this family of models 



is that all items are assumed to have an equal relationship to the underlying latent construct being 

measured, thus these models estimate a common discrimination parameter for all items. Whether 

your items are dichotomous or polytomous, an important consideration when choosing the right 

model is whether the item discrimination parameters, or slopes, should be free to vary across 

items, or whether a model from the Rasch family is more appropriate. Each class of models has 

advantages. The main benefit of the Rasch models is their parsimony, and the ensuing 

computational advantages (e.g., software with extensive interpretative output, straightforward 

assessment of item fit). However, it is often the case that a less constrained model that estimates 

separate slopes for each item is a more accurate reflection of the data.     

 Apart from the issue of varying versus constrained slopes, there is also the option with 

dichotomous items to estimate a non-zero lower asymptote (the 3PLM). This “guessing” 

parameter was introduced in models of educational test items to characterize respondents’ 

probability of getting a question correct simply by chance (e.g., guessing correctly on a multiple 

choice item). The utility of this parameter has been explored for non-educational items (e.g., 

Reise & Waller, 2003), but is not commonly estimated in this context, as its interpretation is 

somewhat unclear.   

 For polytomous items, the nominal model is appropriate if the item responses do not have 

a specified order, or if a researcher wants to confirm a response order. Usually in health 

outcomes research the item responses are polytomous and ordered, so either the GPCM (or 

Rasch-family constrained PCMs) or the GRM is the suitable model. The choice between these 

two models is somewhat arbitrary, as they generally produce nearly identical results, albeit with 

slightly different parameterizations. Choosing one of these models over the other tends to be 

primarily a result of personal preference and familiarity with software (PARSCALE is set up to 



estimate the PCMs more easily, whereas MULTILOG favors the GRM).  Generating descriptive 

item plots, for example with TESTGRAF (Ramsay, 1995), can also be a useful tool in determining 

the appropriate model for your data.   

Evaluating IRT model fit  
All applications of IRT implicitly assume that the model is correct; the utility of the IRT 

model is dependent upon the extent to which the model accurately reflects the data. As part of 

the process of model fitting in IRT, it is therefore desirable to employ some diagnostic tool to 

evaluate the degree of model-data misfit. The fit of the model can be examined through the 

comparison of model predictions and the observed data in various ways.  

The direct assessment of overall model fit poses challenges and is seldom directly 

evaluated. However, the relative IRT model-data fit can be assessed through the comparison of -

2*log likelihood for nested models (Thissen, 1991). This statistic is distributed as χ2 with the 

appropriate degrees of freedom. For example, to examine the relative fit of the 2PL and 3PL 

models to a set of items, one can evaluate the significance of the difference in the -2*log 

likelihood from each of these model formulations. This difference is distributed as  χ2 with the 

degrees of freedom equal to the difference in the number of parameters in the two models. A 

significant result would imply that the 3PLM provides superior fit to the data.  

 In addition to examining the overall fit of the model to the data, it is also possible to 

examine the fit for each item. Goodness of fit statistics for the 1PL or Rasch (1960) family of 

models are relatively straightforward to construct, as the observed score is a sufficient statistic 

for θ, and the model’s predicted proportions can be directly compared to the observed data for 

each score group. Several indices for this family of models have been proposed (Andersen, 1973; 



Glas, 1988; Rost and von Davier, 1994; Wright and Mead, 1977; Wright and Panchapakesan, 

1969), and many are available as standard output in the Rasch-oriented software packages. 

Goodness of fit statistics for the 2PLM and 3PLM have also been constructed. The 

construction of these indices is more complex because θ, the ability or proficiency that forms the 

basis of the model is a latent variable, and so the model’s predicted proportions as a function of θ 

cannot usually be compared directly to the observed data.  One class of dichotomous item fit 

indices gets around this problem by grouping respondents according to their model-based θ 

estimates, and calculating observed and expected responses for these groups. Indices of this class 

include Yen’s  Q1(Yen, 1981), Bock’s χ2  (Bock, 1972), and  McKinley and Mills (1985) 

likelihood ratio G2 statistic based on computations parallel Yen’s (1981) Q1. The computer 

program BILOG generates item fit statistics of this class if the scale has 20 or more items, but 

these indices should be interpreted cautiously as their Type I error rates tend to be inflated.   

An alternative approach to assessing item fit has been introduced recently (Orlando & 

Thissen, 2000; 2003). In this summed score likelihood-based approach, an item fit statistic is 

formulated based on the observed and expected frequencies correct and incorrect for each 

summed score. This summed score approach was used to form two new indices for dichotomous 

IRT models: S-X2, a Pearson X2 statistic and S-G2, a likelihood ratio G2 statistic. An extension of 

the likelihood-based item fit indices for use with polytomous items is currently underway 

(Bjorner et al, in progress). This extension will be especially useful for applications to health 

outcomes, which are often measured with polytomous items. Although these indices are not 

calculated as part of any commercial software, interest in them is increasing, and software to 

calculate S-X2 is available as freeware.   



 Several graphical representations of item fit have also been proposed, to be used in 

conjunction with a fit statistic, or as an exploratory diagnostic for item fit. Hambleton and 

Swaminathan (1985) suggest a graphical comparison of the observed average item performance 

levels of various ability groups with the performance predicted by the model. Wainer and 

Mislevy (1990) display similar plots of data and a trace line, while Kingston and Dorans (1985) 

propose the analysis of item ability regressions as a diagnostic tool for item fit. Examples of this 

type of plot are shown in Figure 1. Data for these figures are based on 1,000 respondents in the 

PETS-A study (Stevens and Morral, 2003), which included a 10-item Substance Problem Index 

(SPI) as part of the Global Appraisal of Individual Needs (GAIN; Dennis, 1998).  The top panel 

of Figure 1 displays an item from the SPI that was identified as misfitting with the S-X2 index, 

and the lower panel shows an item that did not have a significant S-X2 value. Plots constructed 

based on posterior probabilities have also been utilized (Drasgow et al, 1995; Mislevy and Bock, 

1986). 

Sample size requirements for instrument evaluation 

Although there are no definitive answers regarding sample size requirements, there are 

some general statements and guidelines that can be outlined.  

First, models with fewer parameters will require smaller samples, and more complex 

models will require larger sample sizes.  Rasch models estimate the fewest parameters, and thus 

smaller sample sizes are adequate for stable parameter estimates – perhaps as few as 100 

(Linacre, 1994, suggests 50 for the simplest Rasch model).  For models with more parameters, 

sample size requirements are not entirely clear.  Tsutakawa & Johnson (1990) recommend a 

sample size of approximately 500 for accurate parameter estimates. However, others have 



suggested that as little as 200 or fewer observations can be adequate (e.g., for DIF detection; 

Orlando & Marshall, 2002; Thissen, Steinberg, & Gerrard, 1986).   

Second, IRT item parameter estimates and scores will be more accurate (have smaller 

standard errors) as sample size increases. This implies that the purposes of the calibration need to 

be considered, as different levels of precision may be acceptable given the nature of the question. 

For example, to evaluate questionnaire properties, one does not need large sample sizes for a 

clear picture of response behaviour, although it is important to have a heterogeneous sample that 

accurately reflects the range of population characteristics.  But if the purpose is to generate 

accurate IRT scores for persons responding to a questionnaire, or to calibrate items in an item 

bank, larger samples are required.  

Another related consideration is the sampling distribution of the respondents.  A very 

large sample of homogeneous respondents that do not reflect the population of interest will result 

in highly precise parameter estimates, but only for a limited range of the underlying construct 

being measured.  Ideally, respondents should be spread fairly uniformly over the range of 

interest.  Items at extreme ends of the construct will have higher standard errors associated with 

their estimated parameters if fewer people are located there.   

The better the item response data meet the IRT assumptions of unidimensionality, 

conditional independence, and hierarchical ordering by difficulty, the smaller the sample size 

need be.  Also, the relationship between the items and the measured construct is important, as 

poorly related items may require larger sample sizes (Thissen, 2003).  Increasing the number of 

response categories also increases the need for larger samples, as more item parameters must be 

estimated.  The ideal is to have respondents in each cell of all possible response patterns for a set 



of items; however, this is rarely achieved.  At the least, it is important to have some people 

respond to each of the categories for every item to allow the IRT model to be fully estimated. 

Psychometrician’s role in evaluating and revising instruments 

IRT can be an extremely useful tool for scale development, refinement, and evaluation, as 

results from an IRT calibration provide valuable insights into the performance of items and 

scales. However, these insights are most useful when they are complemented by results from 

classical analyses, such as examination of item-total correlations and Cronbach’s alpha, and 

communicated to content experts.   

It is important to conduct classical analyses because these analyses can familiarize you 

with the data, and inferences from the IRT analyses should generally correspond to those from 

the classical analyses. Large discrepancies in results from these two types of analyses could 

indicate that the IRT model is inappropriate for the data. Discrepancies can also occur if the 

classical analyses assume that the items are measured on a continuous scale, this may be an 

unreasonable assumption.  

Although it is challenging to effectively communicate the complex results from an IRT 

analysis to less technical researchers, sharing results with content experts and eliciting their 

feedback is extremely important. Often, results that appear anomalous to a non-expert are easily 

explained by an expert. Additionally, items that appear only marginally useful, and perhaps 

dispensable from an analytic standpoint may be substantively critical to the content validity of 

the scale. Input from content experts is essential if the implications of results are to be evaluated 

according to both their statistical as well as their clinical significance.      
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Figure Captions 

Figure 1. Example graphical representations of item fit with two dichotomous items from the 10-

item Substance Problems Index. The top panel shows a misfitting item, and the bottom panel, an 

item that fits according to the S-X2 index. 
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