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Summary 

 
 I have four goals in mind for this introductory presentation about item response 
theory and applications: 
 

1. Address the strengths and weaknesses of classical test theory (CTT). 
 

2. Introduce several of the assumptions, models, and features of item response 
theory (IRT). 

 
3. Provide brief descriptions of five applications of IRT:  developing tests, 

identifying differential item functioning (DIF), test score linking or equating, 
computer-adaptive testing, and score reporting 

 
4. Offer some special concerns about applications of IRT to HRQOL, and 

concluding remarks. 
 
Strengths and Weaknesses of CTT 
 
 CTT has been used in the test development field for over 80 years.  The health-
related research literature is full of examples of highly reliable and valid tests, and these 
tests have been used to produce research findings in thousands and thousands of studies.  
References to the CTT model with a focus on true score, observed score, and error score, 
the use of item difficulty (p-values) and item discrimination indices (r values), corrected 
split-half reliabilities and coefficient alphas, applications of the Spearman-Brown 
formula, corrections to correlations for range restriction, the standard error of 
measurement, and much more (see, for example, Gulliksen, 1950; Lord & Novick, 1968) 
are easily found in the research literature.   
 

There will be no bashing from me of classical test theory and common approaches 
to test development and validation.  Were these approaches to be used appropriately by 
test developers, the tests would be uniformly good, and the quality of research would be 
noticeably better.           
 
 At the same time, it is clear that classical test theory and related models and 
practices have some shortcomings and so they are not well suited for some of the 
demands being placed on measurement models today by two innovations:  item banking 
and computer adaptive testing (see, for example, Mills, et al., 2002; Wainer, 2000; van 
der Linden & Glas, 2000).  One shortcoming is that item statistics are dependent on the 
particular choice of respondent samples.  This shortcoming makes classical item statistics 
(such as item difficulty levels, and biserial and point biserial correlations) problematic in 
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an item bank unless all of the test item statistics are coming from the same respondent 
sample, which of course, is highly unlikely, and to make such a requirement would lower 
the utility of item banks in test development.  A second shortcoming is that respondent 
scores are highly dependent on the particular choice of items.  Give an “easy” set of items 
to respondents and they will score high, and give a “hard” set of items to them, and they 
will score low.  This dependence of test scores on items creates major problems when 
computer-adaptive testing is used.  In principle, in a CAT testing environment, 
respondents will see items “pitched” or “matched” to their ability levels, and so, in 
general, respondents will be administered “non-parallel” tests and so the scores 
themselves will not provide an adequate basis for comparing respondents to each other or 
even to a set of norms.   
 
 These two shortcomings are serious drawbacks to the use of classical test theory 
item statistics with item banking and computer-adaptive testing but there are more.  
Typically, classical test models provide only a single estimate of error (i.e., the standard 
error of measurement) and it is applied to the scores of all respondents.  But this means 
that the error estimate is probably too large for the bulk of “middle ability respondents” 
and too small for respondents scoring low or high on the ability scale.  Also, classical test 
theory models the performance of respondents at the test score level (recall “X=T + E”) 
and computer adaptive testing requires modeling between candidate ability and items at 
the item level so that optimal item selections can be made.  Finally, items and 
respondents are reported on separate, and non-comparable scales in classical 
measurement.  This makes it nearly impossible to implement optimal assessment where 
items are selected to improve the measurement properties of the test for each respondent, 
or a prior ability distribution. 
 
Assumptions, Models, and Features of IRT 
 

Item response theory is a statistical framework for linking respondent scores to 
the items on an test to the trait or traits that are believed to be measured by that test.  A 
mathematical model must be specified that provides the “link” (for example, the two-
parameter logistic model) between these item scores and the traits.  It is common to 
assume there is a single trait underlying respondent performance, but models for handling 
multiple traits are readily available (see, van der Linden & Hambleton, 1997).  With a 
model specified, and the respondent item scores available, respondent and item 
parameters can be estimated.   

 
Until about 15 years ago, most of the work with item response modeling of data 

was limited to models that could be applied to dichotomously-scored data—the one-, 
two-, and three-parameter logistic models (Hambleton, Swaminathan, & Rogers, 1991).  
Nationally normed achievement tests (e.g., California Achievement Tests, 
Metropolitan Achievement Tests), university admissions tests (e.g., Scholastic 
Assessment Test, the Graduate Management Admissions Test, and the Graduate 
Record Exam) and many state proficiency tests consist of multiple-choice tests that are 
scored 0-1.  But today, more use is being made of test data arising from new item types 
that use polytomous-scoring (i.e., item level data that is scored in more than two 



 3

categories) such as rating scales for recording attitudes and values, and scoring writing 
samples and complex performances.   

 
    Numerous IRT models are available today for analyzing polytomous response 

data.  Some of these models were available in the late 1960s (see Samejima’s chapter in 
van der Linden & Hambleton, 1997) but were either too complex to apply, were not 
sufficiently well developed (for example, parameter estimation was problematic), or 
software for applying the models was simply not available.   

 
These polytomous IRT response models seem especially important in the health- 

related area because so much of the data that is being produced from these psychological 
tests and scales does not fit a 0-1 item level scoring model.  This seems appropriate 
because with many psychological questions, such as “How do you feel?” a dichotomous 
response such as “good” or “bad” does not capture the full range of options that might be 
expected from respondents.  A rating scale with categories such as Excellent, Very Good, 
Good, Fair, and Poor would generate considerably more information from respondents 
and cover the range of expected responses better.   

 
Polytomous IRT models like the graded response model can handle an unlimited 

number of score categories for items, but for practical reasons, current IRT software is 
normally limited to a maximum of about 20 score categories per item.  Parameter 
estimation becomes problematic when the number of score categories becomes large.  
Five to 10 score categories is not usually a problem in practice, as long as respondent 
samples to the items are at least as large as 200.  Larger samples are always better.    

 
Best known of the polytomous response IRT models is Samejima’s graded 

response model (GRM).  Samejima fits a two-parameter logistic function to the 
probability of obtaining a particular score or a higher score on a rating scale:     
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Here, )(* θixP  is the probability that a respondent with a trait score of θ on item i will 
obtain a score of x or higher, and is often called a “cumulative score category function” 
or “cumulative category response curve” (CCRC).  These probabilities are defined for 
each of n items in the test and for each possible score on the item, ranging from 0 to a 
maximum of mi.  Similar to dichotomous IRT models, D is the scaling constant set equal 
to 1.7 (sometimes this constant is even left out of the model), ia  is the item 
discrimination parameter while ixb  is called the location parameter for score x and 
denotes the point on the θ scale where )(* θixP =.50.  Trait score (the label used to describe 
what the test is measuring (e.g., “overall health”), and this must be determined through 
content, predictive, and construct validity investigations.  Trait scores, or ability scores, 
as they are commonly called, are often scaled to a mean of zero and a standard deviation 
of one for convenience.  If the scores are reported to respondents, it is common to apply a 
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linear transformation to the trait scores first to place them on a more convenient scale (for 
example, a scale with mean = 100, SD= 10) that does not contain negative numbers and 
decimals.       
 
 IRT models are based on strong assumptions about the data:  In the case of the 
GRM, for example, they are (1) the assumption of test unidimensionality and (2) the 
assumption that two-parameter logistic functions will match the actual data (Hambleton, 
Swaminathan, & Rogers, 1991).  Other models specify different assumptions about the 
data (see, for example, van der Linden & Hambleton, 1997).  Failure to satisfy model 
assumptions can lead to problems—for example, expected item and ability parameter 
invariance may not be present, and using CCRCs to build tests, when these curves do not 
match the actual data, will result in tests that will function differently in practice than 
expected.        
 
 The assumption of test unidimensionality is that the items in the test are 
measuring a single dominant trait.  Now, in practice, most tests are measuring more than 
a single trait, but good model fit requires only a reasonably good approximation to the 
unidimensionality assumption.  One check on unidimensionality that sometimes is 
applied is this:  From a consideration of the items in the test, would it be meaningful to 
report a single score for respondents?  Is there a factor common to the items such as 
“overall health” or “attitudes about health” Multidimensionality in a dataset might result 
from several causes:  First, the items may cluster into distinct groups of health topics that 
do not correlate highly with each other.  Second, the use of multiple item formats (e.g., 
checklists, rating scales, open-ended questions) may lead to distinct “method of 
assessment” factors.  Third, multidimensionality might result from dependencies in the 
data.  For example, if responses to one item are conditional on responses to others, 
multidimensionality is introduced.  (Sometimes this type of dimensionality can be 
eliminated by scoring the set of related items as if it were a “testlet” or “super item.”)    
 
 Many different methods are available to explore the dimensionality of item 
response data (see, Hambleton, Swaminathan, & Rogers, 1991).  Various reviews of 
several older methods have found them all in one way or another to have shortcomings.  
While this point may be discouraging, methods are available that will allow the 
researcher to draw defensible conclusions regarding unidimensionality.  For example, 
linear factor analysis (e.g., principal components analysis), nonlinear factor analysis, and 
multidimensional scaling may be used for this purpose, though not without some 
problems at the interpretation stage.  Further, it is recognized that few constructs are 
reducible to a strictly unidimensional form and that demonstration of a dominant single 
trait may be all that is reasonable.  For example, using principal components analysis we 
would expect a dominant first factor to account for roughly 20 percent or more of the 
variance in addition to being several times larger than the second factor.  Were these 
conditions met, the assumption of unidimensionality holds to a reasonable degree.   
 
Descriptions of Five IRT Applications 
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Very brief introductions to five popular applications of IRT follow.  Books by 
Hambleton, Swaminathan, and Rogers (1991), Mills, et al. (2002), van der Linden and 
Glas (2000), and Wainer (2000) provide many more details on the applications. 
 
Developing Tests.  Two of the special features of IRT modeling are item and test 
information functions.  For each item, a function is available indicating where on the 
reporting scale an item is helpful in estimating ability and how much it contributes to an 
increase in measurement precision.  Basically, items provide the most measurement 
around their “b-value” or level of difficulty and the amount of information depends on its 
discriminating power.  The test information function (which is a simple sum of the 
information functions for items in a test) provides an overall impression of how much 
information a test is providing across the reporting scale.  The more information a test 
provides at a point on the reporting scale, the smaller the measurement error will be.  In 
fact, the standard error of measurement at a point on the reporting scale (called the 
“conditional standard error of measurement”) is inversely related to the square root of the 
test information at that point.   
 
 A test information function is the result of putting a particular set of items into a 
test.  Therefore, sometimes, it is specified in advance as the “target” and then items can 
be selected to produce the test of statistical interest.  Item selection often becomes a task 
of selecting items to meet content specifications, and statistical specifications (as 
reflected in a “target information function”).  One of the newest IRT topics (called 
“automated test assembly” is the development of procedures for allowing test developers 
to define the test of interest in considerable detail, translate those specifications into 
mathematical equations, and then with the appropriate software, actually select test items 
from a bank of calibrated test items to meet the requirements for the test (see, van der 
Linden, in press; van der Linden & Glas, 2000).     
 
Identifying DIF.  The property of item parameter invariance is immensely useful in test 
development work, but not something that can be assumed with IRT models.  The 
property must be demonstrated across sub-populations of the population for whom the 
test is intended.  This might be male and females; Blacks, Whites, and Hispanics; well-
educated and less well-educated; older, middle age, and younger respondents; etc.  
Basically, IRT DIF analyses involve comparing the item characteristic curves (for 0-1 
data) or, say, the CCRCs (for polytomous response data fitting the GRM) obtained in 
these subpopulations.  Much of the research has investigated different ways to summarize 
the differences between these ICCs/CCRCs (see, Hambleton, Swaminathan, & Rogers, 
1991).  DIF via IRT modeling is not especially easy to implement (because of the number 
of steps involved), but the easy graphing capabilities of ICCs and CCRCs makes DIF 
interpretation more understandable to many practitioners.    
 
Test Score Linking or Equating.  In many practical testing situations, such as 
achievement testing, it is desirable to have multiple versions or forms of a test.  For 
example, a test like the Scholastic Assessment Test would quickly become of limited 
value if the same test items were used over and over again.  Every high school senior 
would be going to Kaplan to get an advanced look at the questions.  Items would become 
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known to test takers and passed on to others about to take the test.  Test validity would 
drop to zero quickly.  So, while multiple forms of a test may be a necessity, it is also 
important that these tests be statistically equivalent so that respondents do not benefit or 
placed at a disadvantage because of the form of the test they were administered.  Proper 
test development is invaluable in producing near equivalent tests, but it is no guarantee, 
and so “statistical equating” is carried out to link comparable scores on pairs of tests.  
Statistical equating can be carried out with classical or IRT modeling, but it tends to be 
easier to do with IRT models and with a bit more flexibility.  There is some evidence too 
that IRT equating may produce a better matching of scores at the low and high end of the 
ability scale (see, for example, Hambleton, Swaminathan, & Rogers, 1991). 
 
 With attitude and personality tests, equating of multiple forms of a test may not be 
important because often only a single form of each test exists.  But what may be 
important are efforts to link or equate scores on tests designed by different researchers 
but, in the main, that purport to assess the same construct.  With linking procedures, 
aggregation of results obtained across multiple tests measuring the same construct may be 
possible.            
 
Computer-Adaptive Testing (CAT).  “Adapting a test” to the performance of the 
respondent as he/she is working through the test has always been viewed as a very good 
idea because of the potential for shortening the length of tests.  The basic idea is to focus 
on administering items where the particular answer of the respondent is the most 
uncertain—that is, items of “medium difficulty” for the respondent.  When testing is done 
at a computer, ability can be estimated after the administration of each item, and then the 
ability estimate provides a basis for the selection of the next test items.  Testing can be 
discontinued when the level of precision that is desired for ability estimates is achieved.  
It is not uncommon for the length of testing to be cut in half with “computer adaptive 
testing.”  The computer provides the mechanism for ability estimation and item selection.  
Item response theory provides a measurement framework for estimating abilities and 
choosing items.  The property of “ability parameter invariance” makes it possible to 
compare respondents to each other or standards that may have been set despite the fact 
that they almost certainly took collections of items that differed substantially in their 
“difficulty.”  Without IRT, computer-adaptive testing would lose many of its advantages.  
Computer-adaptive testing remains today as one of the best applications of IRT (see, 
Wainer, 2000).       
 
Score Reporting.  One of the special features of IRT modeling of data is that the item 
statistics and respondent abilities are reported on the same scale.  This feature creates the 
possibility to make a score reporting scale more meaningful by defining points along the 
scale in terms of the test items and how they are functioning at points along the reporting 
scale.  For example, a point on the scale might be defined by the statements to which a 
candidate might agree with, with a probability of, say, 80% probability or higher.  By 
defining a number of points in the same way, it becomes possible to make meaningful 
distinctions among respondents scoring at different points along the ability continuum.   
 
Special Concerns and Concluding Remarks 
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The health outcomes field provides some unique challenges for persons interested 

in applying IRT models to their data.  One challenge arises because of the potential for 
multidimensional data.  All of the popular IRT models are based on the assumption of a 
single dominant factor underlying performance on the test.  It remains to be seen to what 
extent health outcome measures are multidimensional, how that multidimensionality can 
be detected, and how it might be handled or modeled when it is present.  A second 
challenge is associated with model fit.  IRT models are based on strong assumptions 
about the data, and when they are not met, advantages of IRT modeling are diminished or 
lost.  At the same time, approaches to addressing model fit, remain to be worked out, 
especially the extent to which model misfit can be present without destroying the validity 
of the IRT model application.   

 
Finally, and as I have said in other papers, IRT is not a magic wand that can be 

used to fix all of the mistakes in test development such as (1) the failure to properly 
define the construct of interest, (2) ambiguous items, and (3) flawed test administrations.  
At the same time, it has been demonstrated many times over that IRT models, when they 
fit the data, and when other important features of sound measurement are present, IRT 
models provide an excellent basis for developing tests, and providing valid scores for 
making decisions about individuals and groups.     
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