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1. Introduction 

 Patient reported outcomes (PRO) measurements are an integrated component of our 

health care system. This form of assessment refers to the use of patients’ evaluation of their own 

physical and emotional well-being generally in response to medical care that they are receiving 

for treatment purposes. PRO measurements that yield psychometrically sound scores (reliable, 

valid) permit health care providers to evaluate directly the impact of a given treatment from the 

patient’s perspective, as well as determine the efficacy of specific pharmaceuticals or medical 

devices. This requires a comprehensive, flexible, affordable solution for PROs measurement and 

management completed with the Health Insurance Portability and Accountability Act. Although 

self-report inventories of health status serve a different purpose than cognitive tests of 

achievement or aptitude (typically the focus of the various model-based measurements to be 

described) the psychometric procedures used for the development, maintenance, and scoring of 

these tests can be readily adapted to issues that may arise in PRO measurement.  

 A central issue in PRO measurement is whether obtained scores represent the measured 

trait (e.g., severity of depression). The empirical question is whether the relationships among 

scale items can be explained by a single underlying trait (e.g., depression), and are thus 

unidimensional, or form sub-scales to operationalize the trait’s multidimensional structure. 

Factor analysis is a multivariate statistical procedure used to investigate the data structure of a set 

of observed variables (e.g., test scores, items). As a data analytic technique, factor analysis has a 

long, rich history in the dimensionality assessment of psychological measures; over the past 

century, it has served useful in developing and testing theoretical explanations of human abilities 

and behavior (Harman, 1976). In these roles, factor analytic results have substantial theoretical 
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and statistical implications. Although the early use of factor analysis to analyze scores from test 

batteries is now rarely seen, the common factor model incorporated in structural equation 

modeling (e.g., confirmatory factor analysis) (Jöreskog, 1969) continues to be widely applied. 

Analysis of item responses to determine the dimensionality of item banks or putative tests has 

expanded greatly with the introduction of item response theory (IRT) based methods applicable 

to dichotomously and polytomously scored item-level data (Bock, Gibbons, & Muraki, 1988; 

Bock, Gibbons, & Schilling, in press; Mislevy, 1986). 

 The widespread use of PRO measurements across clinical settings makes it imperative to 

gauge the extent to which these instruments display evidence of construct validity, i.e., measure 

the construct intended. To promote an understanding of the use of IRT in PRO measurement, this 

workbook provides a general introduction to full-information item factor analysis (FIFA) 

procedures. Both exploratory and confirmatory FIFA procedures are presented, including an 

introduction to item parameter estimation and estimation of factor scores. The contribution of 

computerized adaptive testing (CAT) to PRO measurement is also discussed. Applied examples 

are provided to assist practitioners and researchers to implement IRT-based procedures to 

develop, maintain, and score instruments for PRO measurements. 

 The outline of this workbook is as follows. (1) A brief review of PRO measurement, 

including a description of several PRO measurements that serve as didactic examples within this 

workbook. (2) A conceptual overview of IRT. (3) An introductory technical description of 

unidimensional IRT models for dichotomous and graded response data. (4) A presentation of 

multivariate IRT models for conducting unrestricted, exploratory factor analysis and parameter 

estimation. (5) An introduction to the confirmatory-based, bifactor IRT model (Gibbons & 

Hedeker, 1992; Gibbons, Bock, Hedeker, et al., 2007a). (6) The theory and use of CAT in the 
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context of PRO measurement. The workbook concludes with applied examples to show the 

application of IRT within the context of PRO measurement.         

2. Patient Reported Outcomes 

a. Conceptual overview 

 PRO measurement has become a critical component of our current health care system. 

The use of patient reports for assessment purposes within this setting is to provide more efficient, 

cost-effective, and tailored patient care. For instance, self-report depression inventories provide 

one method to gauge changes in a patient’s depressive symptoms since an alteration in 

medication(s). In this instance, whether or not the patient’s obtained score reflects a decline or 

increase in depressive symptoms depends on the extent to which the scale’s data structure 

reflects the nature of depression. As such, unless scores show evidence of construct validity, they 

cannot be effectively used for inferential purposes. That is, PRO instruments that provide scores 

that represent the measured trait permit health care providers a method to directly evaluate the 

value of a given treatment from a patient’s perspective, as well as the efficacy of specific 

pharmaceuticals or medical devices. 

Regrettably, existing PRO measurements rely heavily on antiquated systems of 

measurement. That is, the methods generally used to develop and score these scales are based on 

classical test theory. In particular, a patient’s scale score is typically reported in the form of a 

sum or mean score. Therefore, an examinee selecting the highest category (strongly agree) on a 

five-point scale for every item on a 20-item depression measure would receive a score of 100, 

indicating severe depression. Characteristically, these scales (a) include a small fixed-length set 

of items, (b) require all patients to be measured on the same items, and (c) cannot be readily 

adapted to meet an individual’s testing needs (Hambleton, 1989). Furthermore, the classical test 
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theory statistics (e.g., Cronbach’s alpha, point-biserial correlation) used to investigate the 

psychometric properties of these instruments are generally sample dependent, indicating that 

they are influenced by respondent characteristics. 

IRT can be used to overcome many of these issues as they pertain to test development, 

maintenance, and scoring. IRT, previously referred to as latent trait theory, represents a broad 

class of mathematical models that specify the probability of an item response in terms of item 

and examinee characteristics (Lord, 1980; Lord & Novick, 1968). As is often the interest in PRO 

measurement, IRT provides clinicians and researchers working within the context of patient care 

a method to investigate how a particular examinee will respond to a given item. Advantages of 

IRT throughout the phases of testing (e.g., development, scoring) include: (a) estimating 

respondents’ trait standing independent of the number of items administered, (b) estimating item 

parameters (e.g., discrimination, difficulty) independent of the sample of respondents from the 

larger population, (c) comparing test performance on different test forms, (d) predicting 

examinee performance on items that have not been administered, and (e) obtaining an estimate of 

the precision of each test score (Hambleton, 1989; Hambleton & Swaminathan, 1985; Yen & 

Fitzpatrick, 2006), among many. 

 To facilitate an understanding of the application of IRT models within PRO 

measurement, particularly those that deal with multidimensional data, a brief presentation of the 

instruments that are used as examples in this workbook are presented. 

3.  Example datasets  

 For didactic purposes, item-level data from several PRO scales are used to demonstrate 

the application of IRT. The first is the Psychiatric Diagnostic Screening Questionnaire (PDSQ; 

Zimmerman & Mattia, 2001), a measure of the most common Diagnostic and Statistical Manual 
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of Mental Disorders Fourth Edition (DSM-IV; American Psychiatric Association, 1994) Axis I 

disorders encountered in outpatient mental health settings. The second is the Post Traumatic 

Growth Inventory (PTGI; Tedeschi & Calhoun, 1996), a measure of an individual’s changes in 

self-perception related to an experienced traumatic event (e.g., surviving cancer, rape). Data 

based on the Jenkins Activity Survey (Jenkins, Rosenman, & Zyzanski, 1972) provides the third 

example. A brief summary of the development and underlying theory of each scale is provided. 

Psychiatric Diagnostic Screening Questionnaire 

 Zimmerman and Mattia (2001) developed the PDSQ to assess current and recent 

psychiatric symptoms. It was designed to be administered and scored within the clinician’s office 

before a formal diagnostic evaluation. Development of the PDSQ was based on the following 

factors that occurred over the past two decades: (a) the need to have standardized instruments to 

reliably assess published criteria for diagnostic decisions, (b) the development of self-report 

questionnaires to diagnosis specific DSM-IV disorders, (c) importance of diagnosing 

comorbidity, or the presence of other disorders beyond the primary disorder, (d) the under-

recognition of comorbidity in clinical settings due to inadequate measuring instruments, and (e) 

the need for clinicians to have instruments to administer during the course of routine diagnostic 

evaluations (Zimmerman & Mattia, 2001).  

 The final version of the PDSQ was based on the results of several large-scale studies. The 

aim of these studies was to develop a clinically useful self-report instrument that yielded scores 

with evidence of reliability and validity. Scale length was based in consideration of the time 

constraints present in diagnostic evaluations. The final scale includes 139 items sampled from 

the following 15 domains: Major Depressive Disorder (MDD), Dysthymia (DYS), Post-

traumatic Stress Disorder (PTSD), Bulimia Nervosa (BUL), Obsessive Compulsive Disorder 
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(OCD), panic disorder (PAN), Mania (MANIA), Psychosis (PSYCH), Agoraphobia (AGOR), 

Social Phobia (SOC), Alcohol Abuse (ALC), Drug Abuse (DRUG), Generalized Anxiety 

Disorder (GAD), Somatoform (SOM), and Hypochondriasis (HYP). Scale items are 

dichotomously scored, with respondents indicating “Yes,” score of 1, if the item is applicable, or 

“No,” score of 0, otherwise.  

Zimmerman and Mattia (2001) report that the diagnostic performance (sensitivity, 

specificity, and positive and negative predictive values) of the PDSQ sub-scales in outpatient 

settings varied in a predictable manner according to the cutoff score. Specifically, as the 

threshold for case identification increased, sub-scale sensitivity decreased and specificity 

increased. Furthermore, receiver operating curves were determined for each sub-scale and all 

areas under the curve were significant (Zimmerman & Mattia, 2001). As far as the authors are 

aware, no study has tested the PDSQ factor structure. PDSQ items are provided in Table 2. Scale 

data for the PDSQ is based on the item responses of 3,997 respondents. 

Post-Traumatic Growth Inventory 

 Tedeschi and Calhoun (1996) developed the PTGI to measure changes in individuals’ 

self-perceptions related to an experienced traumatic event (e.g., cancer survivor). The scale’s 

theoretical foundation is based on research reporting that individuals may perceive positive 

outcomes (e.g., self-perception, philosophy of life) due to a traumatic experience, such as cancer 

(Collins, Taylor, & Skokan, 1990), combat (Sledge, Boydstun, & Rabe, 1980), or rape (Burt & 

Katz, 1987; Veronen & Kilpatrick, 1983). 

 The scale consists of 21 items and requires respondents to rate their experience towards 

positive growth for each item on the following 6-point scale: 0 = “No Change;” 1 = “Very Small 

Change;” 2 = “Small Change;” 3 = “Moderate Change;” 4 = “Great Change;” 5 = Very Great 
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Change.” Tedeschi and Calhoun’s (1996) factor analytic results supported the following five 

factors: Relating to Others, New Possibilities, Personal Strength, Spiritual Change, and 

Appreciation of Life, based on a sample of undergraduate college students (n = 604). Table 1 

reports PTGI scale items. Data for the PTGI is based on the responses of 801 breast cancer 

survivors. 

Table 1 

PTGI (Tedeschi & Calhoun, 1996) Items 

Scale Item 
  

Relating to Others 1. Knowing that I can count on people in times of trouble. 
 2. A sense of closeness with others. 
 3. A willingness to express my emotion. 
 4. Having compassion for others. 
 5. Putting effort into my relationships. 
 6. I learned a great deal about how wonderful people are. 
 7. I accept needing others. 
New Possibilities 8. I developed new interests. 
 9. I established a new path for my life. 
 10. I’m able to do better things with my life. 
 11. New opportunities are avail which wouldn’t have been otherwise. 
 12. I’m more likely to try to change things which need changing. 
Personal Strength 13. A feeling of self-reliance. 
 14. Knowing I can handle difficulties. 
 15. Being able to accept the way things work out. 
 16. I discovered that I’m stronger than I thought I was. 
Spiritual Change 17. A better understanding of spiritual matters. 
 18. I have a stronger religious faith. 
Appreciation of Life 19. My priorities about what is important in life. 
 20. An appreciation for the value of my own life. 

 21. Appreciating each day. 
 
The Jenkins Activity Survey 

 The Jenkins Activity Survey (JAS; Jenkins et al., 1972) is a 54-item, self-report measure 

of Type A behavior (e.g., competitiveness, aggressiveness, haste). It was designed to aid in 

identifying factors that may contribute to diseases (e.g., heart attacks) in individuals ranging in 
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age from 25 to 65 years. Item responses are multiple-choice and questions ask respondents to 

indicate the frequency (e.g., Never, Occasionally, or Almost Always) of one’s behavior (e.g., 

speed, competitiveness) related to specific tasks. Scale scores include an overall Type A 

behavior in addition to the three following subscales: Speed and Impatience, Job Involvement, 

and Hard Driving and Competitive. (JAS items are not provided in this workbook due to 

copyright.) Data for the JAS is based on the item responses of 598 respondents. 

4. Conceptualization of Item Response Theory  

For those already familiar with traditional methods of educational and psychological 

testing, an understanding that classical and IRT methods of scoring tests are based on entirely 

different premises is crucial. Consider the following analogy. Imagine a track and field meet in 

which ten athletes participate in men’s 110-meter hurdles race and also in the men’s high jump. 

Suppose that the hurdles race is not quite conventional in that the hurdles are not all the same 

height and the score is determined by both the runner’s time and the number of hurdles 

successfully cleared, i.e., not tipped over. On the other hand the high jump is conducted in the 

conventional way: the cross bar is raised by, say, 2 cm increments on the uprights, and the 

athletes try to jump over the bar without dislodging it.  

The first of these two events is like a traditionally scored objective test: runners attempt 

to clear hurdles of varying heights which is analogous to questions of varying difficulty that 

examinees try to answer correctly in the time allowed. In either case, a specific counting 

operation measures ability to clear the hurdles (or answer the questions). On the high jump, 

ability is measured by a scale in millimeters and centimeters on the upright and the highest scale 

position of the cross bar the athlete can clear. 
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IRT measurement uses the same logic as the high jump. Test items are arranged on a 

continuum at certain fixed points of increasing difficulty. The examinee attempts to answer items 

until he can no longer do so correctly. Ability is measured by the location on the continuum of 

the last item answered correctly. In IRT, ability is measured by a scale point, not a numerical 

count.  

These two methods of scoring the hurdles and the high jump, or their analogues in 

traditional and IRT scoring of objective tests, contrast sharply: if hurdles are arbitrarily added or 

removed, number of hurdles cleared cannot be compared with races run with different hurdles or 

different numbers of hurdles. Even if the percent of hurdles cleared were reported, the varying 

difficulty of clearing hurdles of different heights would render these figures non-comparable. 

The same is true of traditional number-right scores of objective tests: scores lose their 

comparability if item composition is changed.  

The same is not true, however, of the high jump or of IRT scoring. If the bar in the high 

jump were placed between the 2 cm positions, or if one of those positions were omitted, height 

cleared is unchanged and only the precision of the measurement at that point on the scale is 

affected. Indeed, in the standard rules for the high jump, the participants have the option of 

omitting lower heights they feel they can clear. Similarly, in IRT scoring of tests, a certain 

number of items can be arbitrarily added, deleted or replaced without losing comparability of 

scores on the scale. Only the precision of measurement at some points on the scale is affected.  

This property of scaled measurement, as opposed to counts of events, is the most salient 

advantage of IRT over classical methods of educational, psychological, and patient-reported 

outcome (PRO) measurement. In all applications of objective testing there is an ever-present 

need to add, delete, or alter test items in active use. When the measurement methods are based on 
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classical theory, these changes in the item composition of tests require time consuming and often 

expensive fieldwork to revise the norms for the test or equate alternative forms of the test. When 

IRT-based methods are used, items can be moved in and out of tests in the course of routine 

operational testing without affecting scale score interpretation.  

5. Classical Test Theory 

 Classical test theory grew out of the need for methods of analyzing and scoring multiple-

item cognitive tests -- for example, tests of intelligence or educational achievement. In that 

context there are unambiguous answers to the test exercises, and the obvious measure of a 

respondent's performance is simply the count of correct responses to the test items. When applied 

to affective assessment, however, -- for example, to descriptions of personality traits, expressions 

of opinion, or inventories of behaviors and symptoms -- these methods have several limitations. 

In these applications, the responses are largely a matter of degree and must be assessed on scales 

of intensity or frequency. Typical scales consist of multiple ordered categories bearing labels 

such as "disagree strongly," "disagree," "uncertain," "agree," "agree strongly," or "never," 

"occasionally," "often," "always." For types of response options, classical test theory has nothing 

more to offer than assigning successive integer values to the categories and summing these 

values over items to measure the attribute in question. That is, each item equally contributes to 

the respondents’ assigned score, regardless of the strength of its relationship to the measured 

trait. Furthermore, no evidence of the appropriateness or optimality of this method of scoring the 

measuring instrument is provided. The greatest problem with assigned values is that they do not 

provide for different items having different numbers of categories -- either intentionally or in 

effect because some categories of some items are rarely or never used. In these situations, for 



Multi-dimensional and hierarchical modeling monograph   12 

example, the influence of each item on the summary score depends arbitrarily upon its effective 

number of categories. 

6. Item Response Theory  

IRT cuts through these problems by fitting mathematical models that give the probability 

of response in each item category as a function of parameters characteristic of the item and 

measurements descriptive of the respondent. For analyzing and scoring responses in two or more 

ordered categories, these models make possible likelihood-based statistical methods with known 

optimal properties (Bock & Aitkin, 1981). In particular, they use the total amount of information 

conveyed in individuals’ item response patterns to estimate trait standing. These methods are 

now in wide use for analyzing and scoring essay tests and open-ended exercises that are graded 

in ordered categories (Thissen & Wainer, 2001).  

Technically, IRT embodies a host of probabilistic models to estimate a respondent’s 

probability of selecting a particular item response category (Lord, 1980; Lord & Novick, 1968). 

This is facilitated by considering factors related to the item and respondent. Item characteristics 

generally include discrimination and difficulty parameters. Item discrimination refers to how 

well an item discriminates between examinees with low and high standing on the underlying 

latent trait (e.g., depression, post-traumatic growth). Within PRO measurement, item difficulty 

can be regarded as how likely a particular respondent will endorse an item (i.e., respond “yes” on 

dichotomously scored item). In some instances, a model that also includes a pseudo-guessing 

parameter is included to model data for multiple-choice items commonly found on achievement 

tests (Lord, 1980). Patients’ standing on the measured trait, or propensity level, is used in the 

IRT models to account for the aspect of the individual that contributes to how he/she will 

respond to a given item.  
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IRT procedures can be applied to a variety of data types. Scale items can be 

dichotomously (e.g., correct/incorrect, yes/no) or polytomously (e.g., Likert-scored response 

categories) scored and the categories can be ordered or unordered. Additionally, there is an 

assortment of IRT models to specify item performance in terms of a single underlying latent trait 

(e.g., normal ogive, 1- and 2- parameter models). Readers are referred to several informative 

references to gain an understanding of the available IRT models for dichotomous (Hambleton, 

1989; Harris, 1989; Lord, 1980; Lord & Novick, 1968; Yen & Fitzpatrick, 2006), polytomous 

(Thissen & Steinberg, 1986; Yen & Fitzpatrick, 2006), and multiple-choice (Thissen & 

Steinberg, 1984) item responses. Several IRT models to handle these data types are presented 

below. 

Item response functions (IRFs), also called trace lines (Lazarfeld, 1950), provide a useful 

graphical description of an item’s functioning as modeled in IRT. Figure 1 shows an IRF that 

models the probability of a positive item endorsement for a dichotomously scored item in terms 

of an item’s discrimination and difficulty parameters, in addition to the underlying latent variable 

(θ ). The latent trait is unobserved and represents a respondent’s level of proficiency or 

propensity. As shown, the IRF models the non-linear relationship between a probability of a 

positive item endorsement and θ . Inspection of Figure 1 indicates thatθ , which typically ranges 

between -3 and +3 on a z-score metric (mean = 0, standard deviation = 1), is represented on the 

x-axis. Probability estimates of a positive endorsement for a given ability level are reported on 

the y-axis. The threshold parameter (b) characterizes the item’s level of difficulty and is 

expressed on the same scale as ability. Its value corresponds to the ability value with a 50% 

probability of a positive response (“yes” response). Items with a low probability of a positive 

endorsement have threshold values near -3, whereas items having a high endorsement probability 
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have values closer to +3. The discrimination parameter (a) is proportional to the slope where 

there is a 50% probability of a correct item response. Flat IRFs indicate poorly discriminating 

items and steep curves correspond to highly discriminating items. As shown in Figure 1, an 

assumption of IRT is that an individual’s probability of positively endorsing an item is a 

monotonically increasing function of θ  (Lord, 1980; Lord & Novick, 1968). 

Figure 1 

Hypothetical IRF 
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a.   Unidimensional Models 

The unidimensional IRT models for dichotomously scored items are perhaps the most 

commonly used models. The fundamental model is the normal ogive model; in which the 

cumulative normal curve serves as the response function (see Lord and Novick, 1968, Chpt. 16). 

Model assumptions include a single latent trait (e.g., depression) underlies the item responses 

and the metric of θ for the item response function for each item can be represented as the normal 

ogive (Lord & Novick, 1968, p. 366). The normal ogive is 
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)()( jj yP Φ=θ                                                                    (1) 

where Φ is the cumulative normal distribution function and yj = aj(θ – bj), called the normal 

deviate. Equation (1) models the probability of an individual with a given level ofθ  positively 

endorsing item j (or obtaining a correct response). The probability of not endorsing item j 

is . )(1 jj yP Φ−=

 The similar but mathematically more convenient family of probabilistic models is the 

logistic models (see Birnbaum, 1968). The logistic (cumulative) distribution function is 

)7.1()( jj zP Ψ=θ                                                                  (2) 

where ψ is the logistic cumulative distribution function, 1.7 is a scaling constant to make the 

model comparable to the normal ogive model (Camilli, 1994; Birnbaum, 1968), and zj = aj(θ – 

bj), referred to as the logistic deviate. 

 The one-parameter model, or Rasch model (Rasch, 1966), is the most restrictive and only 

includes item difficulty and θ in estimating item performance. The two-parameter (2-PL) model 

also includes an item’s discrimination parameter. The three-parameter (3-PL) model is the least 

restrictive and also includes a pseudo-guessing parameter in addition to discrimination and 

difficulty parameters. The 3-PL model may not be readily applicable to mental health measures, 

as it is typically used for data in which guessing could occur, such as multiple-choice items on 

achievement tests.  

The 1-parameter model was developed by Rasch (1966) to model an individual’s 

probability of a positive item endorsement in terms of item difficulty (level of endorsement) and 

θ. The logistic model is 

)(exp1
1)(

ibiP −−+
= θθ                                                          (3) 
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where Pi(θ) is an individual’s probability of a positive item endorsement with a particular trait 

level, or theta, and b is item difficulty. The model is the most restrictive of the unidimensional 

IRT models as it posits equal discrimination across items. Although this is generally an 

untenable assumption to be met in applied testing contexts (Hambleton & Jones, 1989; 

Hambleton & Swaminathan, 1985; Traub, 1983), the model is easier to work with because only a 

single item parameter needs to be estimated.  

The 2-PL model relaxes the restrictive assumption of equal discrimination specified in 

the 1-PL model by also including a discriminatory power parameter in the model. The model is  

)(7.1exp1
1)(

ii baiP
−−+

= θθ                                                               (4) 

where a is item discriminatory power, and the other model parameters can be interpreted as those 

presented for the 1-PL model. Discrimination parameters typically range from 0 to 2 (Hambleton 

& Swaminathan, 1985), with high values being more effective with discriminating between 

respondents with low and high trait levels. 

 Figure 2 illustrates an IRF for an item based on the 2-PL model. Compared to that shown 

in Figure 1, the curve is steeper and corresponds to an item that is more strongly related to the 

measured trait. The threshold (b parameter) for this item is 0.75. The lower asymptote 

approximates zero, indicating that an examinee with low standing on the measured trait has 

roughly a zero probability of endorsing a positive response. For example, a non-depressed 

respondent would likely have a low probability of answering “yes” on an item asking whether 

he/she has felt helpless over the past several days. 
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Figure 2 

Hypothetical IRF based on 2-PL IRT Model 
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The 3-PL model builds on the 2-PL model by also including a pseudo-guessing 

parameter, ci. The form of the model is 

)(7.1exp1
1

)(
ii ba

i
ii

c
cP −−+

−
+= θθ                                                          (5) 

where ci is the lower asymptote of the item characteristic curve, which indicates the lowest 

probability of a correct response that may occur due to guessing (Lord, 1980). Figure 3 shows an 

IRF based on the 3-PL IRT model. The lower asymptote is greater than 0 (c = .13), indicating 

that respondents with varying trait levels have some probability of a positive item endorsement. 
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Figure 3 

Hypothetical IRF based on 3-PL IRT Model 
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There is also a class of IRT models for polytomously scored items (e.g., Likert scales). 

These include, for example: Samejima’s (1969) graded response model, Bock’s (1972) nominal 

(non-ordered) response model, Master’s (1982) partial credit model, and Andrich’s (1978) rating 

scale model, which Muraki (1990) generalized by introducing a discriminating power parameter, 

and Thissen and Steinberg’s (1984) model for multiple–choice items. These models estimate an 

examinee’s probability of selecting a particular response category (e.g., strongly disagree, 

disagree, neutral, agree, strongly agree) for a given item. For example, a patient with severe 

depression would most likely have a high probability of answering “strongly agree” on an item 

asking whether he/she has felt helpless over the past few days.  
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Samejima’s (1969) graded response model is perhaps the most widely used 

unidimensional IRT model for ordered, polytomous responses (e.g., 1, 2, 3, …, m – 1, where m – 

1 is the highest trait level). The categorical response probability is 

)()()( 1, −Φ−Φ= kjjkjk yyP θ                                                            (6) 

where Pjk(θ) is the probability of an individual with a given θ selecting category k of item j, and 

is the difference between the probabilities of selecting successive categories.   

 The logistic model is 

)(a- )je 1
1  *)(

jkbjkP −Θ+
=θ                                                                (7) 

where, *)(θjkP  is the probability that person with θ will reach category k or higher on item j, bjk 

refers to the point on the trait continuum where an examinee has a 50% probability of selecting 

category k, and a refers to the item’s discriminatory power (equal across categories). 

 Therefore, the probability that individual n will endorse category k is  

)(a-)(a- 1,jj e 1
1    

e 1
1  *)(

−−Θ−Θ +
−

+
=

kjjk bbjkP θ . 

The model specifies that each previous category must be obtained prior to selecting the next 

highest category (Samejima, 1969).  

Figure 4 illustrates the probability of a selecting one of five possible response categories 

on a Likert scale item based on Samejima’s (1969) graded response model. Inspection of the 

IRFs for each response category indicates that lower trait estimates correspond to higher 

probabilities of selecting lower response categories (e.g., 1, 2), whereas higher trait estimates 

correspond to choosing higher response categories (e.g., 3, 4). As specified in the model, the 

categorical trace lines have equal slopes and unique threshold (difficulty) parameters. The 

hypothetical trace lines in the figure could correspond to any type of measure in which 



Multi-dimensional and hierarchical modeling monograph   20 

respondents select a particular response (e.g., strongly disagree, neutral, strongly agree), 

including the PTGI (Tedeschi & Calhoun, 1996). 

Figure 4 

Hypothetical IRFs for Item with Five Category Response 
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Muraki (1983, 1990) introduced a rating scale version of the graded response model that 

included category parameters to represent the psychological distance among points on the rating 

scale. It differs from Samejima’s original model in that (a) it requires estimation of  

fewer parameters, (b) the category parameters associated with the points on the rating scale may 

be separately estimated from the item parameters, and (c) the items may be unidimensionally 

ordered by the item intercept. Characteristics of the rating scale model are that (a) items with 

different numbers of response categories cannot be used, and (b) the model assumes common 

distances between response categories for all items.   

( 1)n m−

IRT model selection hinges on several considerations. Among the factors include: sample 

sizes, properties of items, purpose of study, and shape of the score distribution, among many. For 

example, stable parameters estimates based on the 1-PL model (Rasch model) have been 
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reported for a test length of 20 items and sample size of 200 (Wright & Stone, 1979). For the 2-

PL model, parameters characterizing a 30 item measure can be estimated based on 500 

respondents (Hulin, Lissak, & Drasgow, 1982). As for the 3-PL model, Hulin et al. (1982) and 

Swaminathan and Gifford (1983) found that a sample size of 1,000 would yield acceptable 

parameter estimates for 60 and 20 item measures. Hambleton (1989) suggests the following 

sample size recommendations to obtain stable parameter estimates: 200 (1-PL), 500 (2-PL), and 

1,000 (3-PL). Larger sample sizes (> 1,000) are required for polytomous items (De Ayala & 

Sava-Bolesta, 1999). Yen and Fitzpatrick (2006) provide a review of studies addressing the 

effect of test length, sample size, and parameter estimation on the performance of IRT.  

Application of unidimensional IRT models includes meeting the strong assumptions of 

unidimensionality and local independence (Lord, 1980; Lord & Novick, 1968). 

Unidimensionality requires that the items measure a single underlying latent trait; local 

independence is an extension of this principle and suggests that after accounting for ability, item 

responses are uncorrelated (Lord, 1980). 

Advancements in IRT over the past several decades have enabled it to grow as a robust 

and powerful data analytic strategy for a wide range of testing applications. Areas in which IRT 

is routinely applied include: (a) test and survey development (Beck & Gable, 2001; Hambleton 

& Swaminathan, 1985), (b) differential item functioning (Thissen, Steinberg, & Gerrard, 1986; 

Thissen, Steinberg, & Wainer, 1988, 1993), (c) test score equating (Cook & Eignor, 1991), (d) 

test scoring (Thissen & Wainer, 2001), and (e) Computerized Adaptive Testing (CAT - Wainer, 

Dorans, Eignor et al., 2000), among many.  

 More recently, IRT has been advanced to model the dimensions underlying scale data in 

the form of exploratory and confirmatory factor analysis (Bock et al., 1988; Gibbons et al., 
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2007a; Gibbons & Hedeker, 1992). This is an important development in the area of IRT, as it 

provides practical ways to model the inherently multidimensional structure of PRO measures.  

7. Multidimensional IRT Models 

a. Underlying theory 

 Many psychological constructs are multidimensional, in that they can be measured as 

subscales of a more general construct. This is particularly true in the measurement of personality, 

for example, but many ability and achievement variables can also be measured on multiple 

indicators. However, unidimensional IRT models have been predominant across social science 

research (e.g., psychologically, sociology, education) and health related quality of life (HRQOL) 

measurement primarily because, historically, multidimensional IRT parameter estimation 

procedures were not fully developed or studied.  

 A critical problem in the construction of affective and cognitive tests is establishing the 

number of dimensions of individual differences among respondents that are required to account 

for response data from a given set of items administered to a sample from some population of 

respondents. The statistical procedure for this purpose is so-called "item" factor analysis, or 

FIFA -- that is, application of multiple factor analysis directly to the item responses rather than to 

test scores.  

 Several studies have examined the effects on item parameter estimation of applying 

unidimensional IRT models to item response data that are not strictly unidimensional (Ansley & 

Forsyth, 1985; Drasgow & Parsons, 1983; Reckase, 1979; Way, Ansley, & Forsyth 1988). Two 

general finding emerge from these studies: (a) if there is a predominant general factor in the data, 

and dimensions beyond that major dimension are relatively small, the presence of 

multidimensionality has little effect on item parameter estimates and the associated ability or 
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impairment estimates (also called theta estimates); (b) on the other hand, if the data are 

multidimensional with strong factors beyond the first (as would be the case with a multiple-

indicator personality, HRQOL, or achievement instruments) unidimensional parameterization 

results in parameter and theta estimates that are drawn toward the strongest factor in the set of 

item responses; this tendency is ameliorated to some extent if the factors are highly correlated.. 

The first situation has led to the development of procedures for determining “essential 

unidimensionality” (Stout, Habing, Douglas, Kim, Roussos, & Zhang, 1996), which can be 

defined as a set of test items that are not strictly unidimensional, but are “unidimensional 

enough” that the application of unidimensional IRT estimation procedures will result in 

parameter and theta estimates that are not seriously distorted by the existing degree of 

multidimensionality in the data.  

 The second situation is more serious since unidimensional parameter estimation 

procedures applied to such data will result in serious distortion of the measurement 

characteristics of the instrument. Folk and Green (1989) examined the effects of using 

unidimensional item parameter estimates with two-dimensional data in the context of both 

adaptive and conventional tests. Their results indicated that theta estimates were drawn to one or 

the other of the two traits underlying the data, with the tendency more pronounced for adaptive 

tests when there is a likely chance that the non-dominant factor will not contribute to the scale 

score. In addition, the effect was greater when the two dimensions were relatively uncorrelated. 

Their results suggested that the greater effect on adaptive tests was due to the fact that in the 

adaptive tests, item discrimination parameter estimates were used both to select items (through 

item information) and to estimate theta. 
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b. Factor analysis of tetrachoric correlations 

Traditionally, item factor analysis has been carried out on tetrachoric correlations between all 

pairs of dichotomous item responses. Tetrachoric correlations represent the relationship between 

two dichotomous variables with underlying continuous distributions. Figure 5 shows a 

dichotomous variable (item) with a continuous underlying distribution. Within this illustration, 

the threshold parameter (τ1) equals -0.92. This value indicates the point on the trait scale in 

which a respondent would be expected to indicate a positive item endorsement (x = 1). Figure 6, 

for example, provides a graphical depiction of hypothetical bivariate distributions for responses 

on two depression items (Items 1 and 2, respectively). Each axis represents the underlying latent 

trait continuums, and the ellipses illustrate several possible shapes of the distributions of the 

responses to these items. The threshold parameters (τ) represent the point on the trait scale where 

a positive endorsement would be expected for each item. In this figure, the threshold for Item 1 

(τ1) equals -0.85, where as the threshold for Item 2 (τ1) is -0.90. This indicates that respondents 

with trait estimates above -0.85 and -0.90 on Items 1 and 2, respectively, would be more likely to 

indicate a positive response. 
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Figure 5 

Dichotomous Item Response with Continuous Underlying Distribution  
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Figure 6 

Bivariate Distribution of Item Responses for Two Items 
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Note. τ1 and τ2 represent threshold parameters that represent cut-points 

on underlying continuous scale for Items 1 and 2 where responses become  

     dichotomized.  

 Factor analysis of the tetrachoric correlation matrix with iteration of communality 

estimates performs reasonably well when the sample size is very large and the probability of the 

accepted response is near 50% for all items. Tetrachoric correlations assume that the four-fold 

frequencies of correct (e.g., scored 1) and incorrect (e.g., scored 0) responses of paired items 

(e.g., 0, 0; 0, 1; 1, 1) arise from a similar partition of the bivariate normal distribution at points 

corresponding to the item thresholds. However, problems with the use tetrachoric correlations for 

factor analysis have been noted by Carroll (1945). 
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c. Factor analysis of polychoric correlations 

 This procedure generalizes to ordered-multiple categories by factor analysis of the 

pairwise polychoric correlations, along with estimates of the thresholds between the categories of 

each item. This approach to item factor analysis encounters difficulties, however, when the 

proportions in some cells of the pairwise frequency tables become extreme, which causes the 

calculation of the correlations to become numerically unstable. In addition, this method of item 

factor analysis has the disadvantage of not providing a rigorous test of the statistical significance 

of successive factors as they are extracted from the correlations. Nor does it make use of the 

information contained in associations of the responses at higher orders than pairwise: all the 

information used in factor analyzing polychoric correlations is contained in the pairwise 

correlations, as opposed to each respondent’s complete item response vector  

d.  Full-information item-factor analysis 

Item response theoretic factor analysis of responses in two or more ordered categories 

overcomes these difficulties by avoiding the calculation of pairwise correlations. Instead, it uses 

the full information contained in all orders of association for a multiple factor model directly to 

the item response patterns in the data. Highly developed methods for this purpose are now 

available (see Bock & Gibbons, in press; Schilling & Bock, 2005). If multiple rating categories 

are graded and are dichotomized near the median, the latter condition (pairwise correlations) will 

be met and the results may be useful for preliminary examination of the item factor structure. 

This type of analysis can be extended to multiple rating categories if response probabilities of 

joint category occurrences for pairs of items are calculated on the assumption of an underlying 

bivariate normal response process. In more exacting work where a test of additional factors in the 

model is required, full-information maximum likelihood item factor analysis is preferable (Bock 
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et al., 1988) and can also handle multiple categories. This approach does not require computation 

of joint occurrence frequencies and is robust in the presence of items for which the extreme 

category response probabilities are very low or very high. It evaluates the likelihood of the 

pattern of item responses from each case and is equivalent to examining item response joint 

occurrences of all orders. Using adaptive Gaussian quadrature, the likelihoods can be computed 

with good accuracy with only two or three points per dimension for perhaps as many as ten 

factors. Simulation studies by Schilling and Bock (2005) reproduced generating parameter values 

used in eight dimensions with two points per dimension.  

If a given set of items is found to be multidimensional, development of the test 

instrument can proceed in different ways according to the objective of the investigator. If the 

purpose is to obtain a profile of measurements describing the respondent's position on each 

dimension, the factor analysis will identify the subsets of items that best represent the 

corresponding dimensions. The subsets can then be presented to future respondents as separate 

measures, possibly with separate instructions and separately timed. Alternatively, all of the items 

can be presented as a single test and the respondents positions on the dimensions estimated 

directly in the form of factor scores. 

Historically, IRT assumed unidimensional item sets, that is, items for which the 

responses could be accounted for by a single attribute or random effect parameter for each 

subject. However, empirical Bayes and marginal maximum likelihood methods easily extend the 

theory to more than one dimension, the approach sketched by Bock and Aitkin (1981) and 

presented more fully Bock et al. (1988). The basic ideas follow.  
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Following Thurstone (1947) assume that an individual’s response to a test item j  is 

controlled by a latent variable  

 
m

ij jk ki ij
k

y α θ ε= + ,∑  (8) 

 
where jkα  is the loading of item j  on factor , k kiθ  is the proficiency or propensity of individual 

 on factor  (e.g., depression), and i k ijε  is an independent residual. According to the conventions 

of Thurstonian factor analysis, the variable y and θk are assumed standard normal, N(0,1), and the 

θk are uncorrelated. The residuals (ε) are independent and normally distributed with mean 0 and 

variance 2 1 m
j k

2
jkσ α= −∑ , i.e., ε is NID (0, σ). The quantity ∑m

k jk
2α is called the common factor 

variance or communality of the item, and is called the unique variance, or uniqueness. 2
jσ

 Individual i  is assumed to respond positively to item j when ijy is greater than the item 

threshold jγ . Thus, the probability that an individual with factor score vector iθ  will respond 

positively to item j , as indicated by the item score 1ijx =  is given by the normal ogive item-

response function,  
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and the probability that the individual will respond negatively, indicated by , is the 

complement,  

0ijx =

 ( 0 | ) 1 ( )ij i iP x = = −Φ .θ θ

x
i .

j

 (10) 

Since the multiple factor model implies conditional independence (i.e., the items are uncorrelated 

conditional on the underlying factorsθ ), the conditional probability of the item score vector  is  ix

  (11) 1( | ) [ ( )] [1 ( )]
i

ij ij

n
x

i i i j
j

P x −= , , = Φ −Φ∏x θ γ α θ θ

For computational purposes it is convenient to express the argument of the response function in 

terms of an intercept,  

 j jc γ σ= − / ,  (12) 

and factor slopes  

 jk jk ja α σ= / ,

d

 (13) 

rather than threshold and factor loadings.  

 In the context of Bayes estimation, (11) is the likelihood of , and the prior, which is 

multivariate normal, is completely specified. However, because of the nature of this likelihood 

function, this is an example of a model outside the exponential family for which no closed form 

of the posterior mean or covariance matrix is available. Note, however, that the unconditional 

probability of score pattern  can be expressed as  

iθ

ix

 ( ) ( | ) ( )i ih P g
∞

−∞
= = , ,∫x x x θ .γ α θ θ  (14) 

The integral in (14) can be numerically approximated by -fold Gauss-Hermite product 

quadrature. Further details of parameter estimation are provided by Bock and Aitkin (1981), 

Bock et al. (1988), and Bock and Gibbons (in press).  

m
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8.  The Bifactor Model 

a. Underlying theory 

Most typical applications of IRT have assumed unidimensional item sets, that is, items 

for which the responses could be accounted for by a single attribute for each subject. However, 

as previously discussed, Bock and Aitkin (1981) and Bock et al. (1988) extended the IRT model 

to the multidimensional case, where each item is related to one or more underlying latent 

dimensions, traits, or constructs of interest. In part, however, this multidimensionality is 

produced by the sampling of items from multiple domains of an overall social or psychological 

construct. For example, in the measurement of life quality, items are selected from satisfaction 

domains such as satisfaction with family, income, neighborhood, etc. It is quite natural for such 

data to appear to be multidimensional, when in fact, they measure a unidimensional construct, 

i.e., quality of life; however, the items within domains are more highly correlated than items 

between domains. 

 If the factor pattern shows that the factors are substantially correlated, investigators may 

wish to estimate a general level of performance over all dimensions, while at the same time 

taking into account the redundant information within the item subsets that reduces the precision 

of estimation of the general factor. In that case, the item bifactor model (Gibbons & Hedeker, 

1992), consisting of a general factor and independent item group factors, can be fitted to the data. 

It allows for the effect of so-called "failure of conditional independence" within the item groups 

on the standard error of measurement for the general factor. 

 The bifactor model assumes the presence of a general factor involving all items and two 

or more group factors corresponding to specified mutually exclusive subsets of items. This 

restrictive model is relevant whenever the item domain contains sub-domains in which items 
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share a common feature of format or content. Examples are reading comprehension when several 

questions are asked about the same reading passage, or a health inventory where different aspects 

of health—physical, emotional, etc.—are probed. The presence of the subgroups of items will 

typically introduce association of response to items in the subset that is greater than can be 

attributed to the general factor. If these dependencies are not taken into account when computing 

scores for the general factor, the standard error of estimation is underestimated. The bifactor 

model controls for these effects and yields accurate estimates and accurate standard errors of the 

general factor. Because the group factor loadings have nonzero loadings only within the 

subgroups, the quadrature required to compute response-pattern likelihoods is two-dimensional 

regardless of the number of groups. This enables the computation to employ a sufficient number 

of quadrature points in each dimension to make adaptive quadrature unnecessary.  

b. Full-information item bifactor analysis 

A plausible s -factor solution (where s equals number of factors) for many types of 

psychological and educational tests is one that exhibits a general factor and  group or 

method related factors. The bifactor solution constrains each item 

1s −

j  to have a non-zero loading 

1jα  on the primary dimension and a second loading ( 2jk k … sα , = , , ) on not more than one of the 

 group factors. For four items, the bifactor pattern matrix might be 1s −
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where the first column of the matrix represents the primary factor, and the second and third 

columns represents the group factors. This structure, which Holzinger and Swineford (1937) 

termed the “bifactor” solution, also appears in the inter-battery factor analysis of Tucker (1958) 
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and is one confirmatory factor analysis model considered by Jöreskog (1969). In these 

applications, the model is restricted to test scores considered to be continuously distributed. But 

it is easy to conceive of situations where the bifactor pattern might also arise at the item level 

(Muthén, 1989). It is plausible for paragraph comprehension tests, for example, where the 

primary dimension describes the targeted process skill and additional factors describe content 

area knowledge within paragraphs. Similarly, in the context of mental health measurement, 

symptom items are often selected from measurement domains and can be related to the primary 

dimension of interest (e.g., mental instability) and one sub-domain (e.g., anxiety). In these 

contexts, items would be conditionally independent between paragraphs or domains, but 

conditionally dependent within paragraphs or domains.  

 Gibbons and Hedeker (1992) derived an item-response model for binary response data 

exhibiting the bifactor structure and developed a practical method of item parameter estimation. 

As they demonstrated, the bifactor restriction leads to a major simplification of likelihood 

equations that (a) permits analysis of models with large numbers of group factors (e.g., domains), 

(b) permits one-dimensional conditional dependence among identified subsets of items, and (c) 

in many cases provides a more interpretable factor solution than an unrestricted full-information 

item factor analysis (e.g., Bock et al., 1988). Demars (2006) reported that the full-information 

item bifactor analysis of dichotomous data can be expected to provide accurate parameter and 

trait estimates under very general conditions. Gibbons et al., (2007a) extended the bifactor model 

to the case of polytomous items, such as the multi-category rating scales. 

In the bifactor case, the rating scale model is  
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where only one of the  values of  is non-zero in addition to .  2k …= , , jka 1ja
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Gibbons et al. (2007a) derived the likelihood equations and a method for their solution for 

bifactor extensions of both the rating scale model and the Samejima model for ordinal response 

data. The Bock and Aitkin (1981) full-information item-factor analysis may be similarly 

generalized to the graded response model. Bock, Gibbons and Schilling (in press), have also 

developed a method for obtaining factor scores for each of the s-1 group or domain factors in 

addition to the primary factor. 

9. Simulation Study 

a. Overview of simulation study 

A simulation study was conducted to investigate the effects of applying Samejima’s 

(1969) graded response model in unidimensional and bifactor form to multidimensional data. 

Conditions varied in the simulation are: (a) test length, 50 items or 100 items, (b) number of 

dimensions, 5 or 10, (c) primary loadings, .50 or .75, and (d) domain loadings, 0.25 or 0.50. 

Outcome results include: standard deviation of theta estimates, posterior standard deviations 

(PSDs, or standard errors) of Bayes EAP scores, log-likelihood (model fit), differences between 

estimated and actual theta, and percentage change between unidimensional and bifactor models 

of these variables. The generated data were based on a four-point categorical scale, and the 

examinee distribution was assumed to be normal, N(0,1), based on 1,000 replications. In the 

following, we summarize the key findings of this study. 

Figure 7 reports the standard deviations of the theta estimates for the unidimensional and 

bifactor models across the 12 simulated conditions. Inspection of the figure indicates that the 

theta estimates based on the unidimensional model were more varied across conditions. The 

magnitude of the difference decreased when the primary and secondary loadings decreased, 

leading to a more unidimensional solution. As shown, as the number of items increased from 50 
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to 100, the theta estimates for both models became more varied, but not as severe for the bifactor 

model.  

Figure 7 

Mean Standard Deviations of Theta of the Unidimensional and Bifactor Models based on 1,000 

Replications per Condition (Number Items [NI] = 50 or 100, Number Dimensions [ND] = 5 

or10, Primary loadings [PL] = .50 or .75, Domain Loadings [DL] = .25 or .50) 
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 Figure 8 reports the mean posterior standard deviation (PSD) of the Bayes expected a 

posteriori scores (EAP; Bock & Mislevy, 1982). As shown, the differences in the PSD between 

the models can be dissected in terms of the dimensionality of the underlying data. Specifically, in 

the conditions in which the primary loadings are 0.75 and the domain loadings are 0.50, the PSD 

of the unidimensional model substantially underestimates the PSDs from the bifactor model. As 
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shown, the largest PSD for the unidimensional model occurs with 100 items and 5 dimensions. 

The PSD estimated by the bifactor model remains fairly consistent across the conditions in which 

the underlying structure can be regarded as strongly multidimensional (i.e., primary loadings = 

0.75, domain loadings = 0.50).  

For the conditions in which the primary loadings are 0.75 and the domain loadings are 

0.25, the PSD for the unidimensional approaches that for the bifactor model but, nevertheless, 

continues to underestimate the bifactor result, which is the correct value in this case. The largest 

discrepancies between the PSD of these models occurs when the number of dimensions is 5 and 

the number of items is 50 and 100. The smallest difference between the mean PSDs for the 

unidimensional and bifactor models occurs when the number of dimensions is 10 with 50 items. 

For the bifactor model, the PSD decreases slightly when the number of items increases from 50 

to 100. However, the number of dimensions does not seem to significantly influence the PSD of 

the bifactor model.  
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Figure 8 

Mean Posterior Standard Deviations of Bayes Expected A Posterior Scores of the 

Unidimensional and Bifactor Models based on 1,000 Replications per Condition (Number Items 

[NI] = 50 or 100, Number Dimensions [ND] = 5 or10, Primary loadings [PL] = .50 or .75, 

Domain Loadings [DL] = .25 or .50) 
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The results of this study illustrate the consequences attached to applying a 

unidimensional IRT model to data with varying degrees of multidimensionality compared to the 

bifactor model. Several results are worth considering in light of using IRT procedures to model 

health outcomes measurements. The first set of results addressed the variability in estimated 

theta values, or examinees’ standing on the latent trait. Compared to the unidimensional model, 

the bifactor model yielded theta estimates that were more homogeneous across simulated data 
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structures. However, EAP estimates become more varied with an increase in test length, which 

would be expected in practical testing applications due to a given test’s ability to discriminate 

between examinees with different ability levels. That is, longer tests are generally more reliable. 

The only condition in which the unidimensional and bifactor models provided comparable results 

was when the data deviated slightly from unidimensionality (primary loadings = 0.50, domain 

loadings = 0.25).  

 PSD estimates were found to be underestimated across all conditions for the 

unidimensional model. For the bifactor model, PSD values were consistently below 0.20 across 

conditions, except when the total test length was 50 and the primary loadings were 0.50 and the 

domain loadings were 0.25. One setting in which the underestimation of PSDs could affect test 

scores is in computer adaptive testing, in which each item is intentionally selected to provide the 

most information for estimating of examinee ability in the sense of greatest reduction of PSD. 

Using PSD estimates based on the unidimensional model may therefore lead to suboptimal 

estimates of examinee ability. Used as measurement error variance, the inverse squared 

unidimensional PSDs are not valid for weighting observation in statistical analyses using the 

scores as data.  

 While not presented in detail here, we also found that (a) the bi-factor model exhibited 

significantly improved fit over the unidimensional alternative, and (b) root mean square errors 

(RMSE) between the estimated and actual theta values used to generate the data for the bi-factor 

model were lower than those reported by the unidimensional model, indicating better fit of the 

model to the observed data,  
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10. Application to real data 

a. Description of datasets 

 To promote an understanding of the application of IRT in health outcomes research, 

several applied examples are provided. Data for these examples are based on the previously 

discussed PDSQ, PTGI and JAS scales. Results are first presented for the PDSQ, followed by the 

PTGI and JAS, respectively.  

Psychiatric Diagnostic Screening Questionnaire 

 This first example demonstrates testing the factor structure of the PDSQ in terms of a 

bifactor model compared to a unidimensional model. Other competing models tested included a 

symptom domain model, with all but the domain of interest (i.e., fourteen rather than fifteen 

domains in which each domain is left out in of each analysis). Testing the fit of these competing 

models provides the basis to determine (a) the factor structure of the PDSQ, (b) which, if any, or 

all, of the symptom domains add unique test information above and beyond that provided by a 

unidimensional model, and (c) how PDSQ scores should be used for diagnostic purposes (one 

overall score or multiple sub-domain scores). 

The first model fit the unidimensional model to the data (χ2
 = 488,924.45, df = 3,512, p < 

.001). Next, the bifactor model including a primary dimension and all 15 symptom domains was 

fit to the data, and revealed significantly improved model fit compared to the unidimensional 

model  (χ 2
Difference = 79,624.73, dfDifference = 139, p < .001). This suggests that the unidimensional 

hypothesis must be rejected; that is, the scale is multidimensional. Figure 9 presents observed 

and predicted response proportions for the 15 domain bifactor model and illustrates excellent fit 

of the model to the observed 139 symptom response proportions (r = 0.9992).  
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Figure 9 

 
 Table 2 presents the parameter estimates for the bifactor model. The item thresholds 

describe the level on the underlying mental illness dimension that each item shifts from a 

negative to a positive endorsement. Items with small or negative thresholds are endorsed at lower 

levels of mental illness (psychiatric symptoms), whereas items with larger positive thresholds are 

endorsed at higher levels of psychiatric symptoms. For example, the symptom item that is 

endorsed at the lowest level of mental illness (i.e., smallest threshold = -2.146) is item 1 (Feel 

sad or depressed past 2 weeks). By contrast, the symptom item that is endorsed only at the 

highest levels of mental illness (i.e., largest threshold = 1.987) is item 79 (Think had special 

powers). In terms of domains, Dysthymia and Generalized Anxiety have low thresholds, whereas 

Mania, Psychosis, Alcohol Abuse, and Drug Abuse have uniformly high thresholds.  

 In terms of loadings on the primary dimension (interpreted as factor loadings on the 

overall mental illness dimension), Alcohol Abuse, and Drug Abuse domains have low loadings 
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on the primary mental illness dimension (on average about 0.20), whereas Post-Traumatic Stress, 

Obsessive Compulsive, Panic, Psychosis, Agoraphobia, Social Phobia, Generalized Anxiety, and 

Hypochondiasis have the highest (on average about 0.50). Interestingly, the Major Depressive 

Disorder items had lower loadings on the primary dimension, indicating that the primary 

dimension only accounts for a small proportion of item variance. By contrast, loadings on the 

individual symptom domains, were generally uniform and quite high (0.5 to 0.9), with Alcohol 

Abuse, and Drug Abuse domains having the highest domain loadings, most likely due to the fact 

that they had the lowest loadings on the primary dimension and are therefore measuring two 

domains that are distinct from the rest of the test symptom-items. Thus, symptom domains with 

the lowest loadings on the primary domain are not reflected in the total PDSQ score. 
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Table 2 

PDSQ Items, Threshold and Factor Loadings for Bifactor Model 

Domain/ 
Item 

Question Threshold Primary 
Loading 

Domain 
Loading

MDD     
1 Feel sad or depressed past 2 weeks -2.15  0.17 0.52 
2 Sad/depressed every day past 2 weeks -0.72  0.26 0.43 
3 Less pleasure from things 2 weeks -1.13  0.17 0.39 
4 Less interest in most activities 2 weeks -1.13  0.20 0.35 
5 Appetite significantly lower 2 weeks   0.18  0.19 0.13 
6 Appetite significantly greater 2 weeks   0.66  0.10 0.03 
7 Sleep at least 1-2 hours less 2 weeks -0.13  0.25 0.08 
8 Sleep at least 1-2 hours more 2 weeks   0.70 -0.04 0.11 
9 Feel jumpy and restless 2 weeks   0.15  0.39 0.09 
10 Tired nearly every day past 2 weeks -1.15  0.18 0.24 
11 Feel guilty about things 2 weeks -0.60  0.36 0.33 
12 Negative thoughts about self 2 weeks -0.68  0.30 0.49 
13 Feel like failure past 2 weeks -0.38  0.34 0.54 
14 Problems concentrating every day past 2 weeks -0.83  0.34 0.22 
15 Decision making more difficult 2 weeks -0.51  0.33 0.28 
16 Think of dying in passive ways 2 weeks   0.22  0.26 0.73 
17 Wish you were dead 2 weeks   0.56  0.19 0.90 
18 Think you’re better off dead 2 weeks   0.32  0.22 0.85 
19 Thoughts of suicide past 2 weeks   0.26  0.19 0.75 
20 Seriously consider taking life 2 weeks   1.23  0.23 0.77 
21 Think specific way to take life 2 weeks   0.91  0.17 0.74 

DYS     
22 Feel sad/down most days past 2 years -0.34  0.35 0.79 
23 Poor appetite/overeat most days 2 years -0.03  0.36 0.58 
24 Not sleep enough/too much sleep 2 years -0.49  0.35 0.68 
25 Tired most days past 2 years -0.48  0.32 0.80 
26 Problem concentrating/making decisions 2 

years -0.18  0.41 0.71 
27 Low self-esteem most days 2 years -0.53  0.41 0.66 
28 Feel hopeless about future 2 years -0.23  0.42 0.64 

PTSD     
29 Ever experienced traumatic event   0.09  0.31 0.48 
30 Ever witnessed traumatic event   0.36  0.29 0.40 
31 Thoughts of trauma pop into mind   0.19  0.41 0.75 
32 Upset because thinking of trauma   0.39  0.43 0.75 
33 Bothered by memory/dreams of trauma   0.24  0.45 0.78 
34 Reminders of trauma cause distress   0.29  0.48 0.76 

Note. MDD = Major Depression, DYS = Dysthymia, & PTSD = Post-Traumatic Stress. 
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Table 2 (cont.) 

PDSQ Items, Threshold and Factor Loadings for Bifactor Model 

Domain/ 
Item 

Question Threshold Primary 
Loading 

Domain 
Loading 

35 Block out thought/feeling of trauma  0.12 0.45 0.74 
36 Avoid activities remind of trauma  0.46 0.48 0.67 
37 Flashbacks of traumatic event  0.63 0.50 0.64 
38 Reminders make you shake 0.70 0.57 0.59 
39 Feel distant because of trauma 0.52 0.46 0.73 
40 Feel numb because of trauma 0.54 0.43 0.70 
41 Give up goals because of trauma 0.78 0.46 0.63 
42 Keep guard up because of trauma 0.24 0.45 0.70 
43 Jumpy because of a trauma 0.67 0.52 0.62 

BUL     
44 Often go on eating binges 0.47 0.33 0.86 
45 Can’t control how much you eat 0.69 0.31 0.85 
46 Eat so much uncomfortably full 0.36 0.28 0.87 
47 Eat a lot when not hungry 0.44 0.24 0.88 
48 Eat alone because embarrassed 0.90 0.28 0.82 
49 Feel disgusted after overeating 0.47 0.27 0.90 
50 Upset with self because of binges 0.56 0.28 0.89 
51 Strict diets, exercise excessively 1.20 0.30 0.55 
52 Force self to vomit 1.61 0.30 0.55 
53 Weight most important thing 0.10 0.21 0.51 

OCD     
54 Worry about dirt, germs 1.25 0.46 0.44 
55 Worry something you forgot 0.53 0.55 0.41 
56 Worry you’d act/speak violently 0.55 0.60 0.30 
57 Compelled to do things over and over 1.21 0.50 0.66 
58 Do things over that interfered 0.98 0.47 0.66 
59 Wash and clean excessively 1.22 0.47 0.60 
60 Excessively check and do things over 0.91 0.51 0.68 
61 Count things obsessively/excessively 1.31 0.44 0.55 

PAN     
62 Scared because heat beating fast 0.53 0.45 0.72 
63 Scared because short of breath 0.67 0.48 0.71 
64 Scared because shaky or faint 0.57 0.52 0.66 
65 Anxiety attacks for no reason 0.21 0.59 0.49 
66 Anxiety attacks, think will go crazy 0.41 0.64 0.45 
67 Anxious attacks with 3 or more symptoms 0.30 0.60 0.62 
68 Worry about having anxiety attacks 0.69 0.63 0.44 
69 Anxiety attacks caused avoid situations 0.45 0.64 0.30 
70 Feel excessively cheerful/happy 1.11 0.14 0.84 

Note. BUL = Bulimia Nervosa, OCD = Obsessive Compulsive Disorder, & PAN = Panic. 
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Table 2 (cont.) 

PDSQ Items, Threshold and Factor Loadings for Bifactor Model 

Domain/ 
Item 

Question Threshold Primary 
Loading 

Domain 
Loading 

MANIA     
71 Feel extremely self-confident  1.18 0.13 0.87 
72 So much energy, need less sleep  1.40 0.16 0.84 
73 Talk more than usual  1.05 0.35 0.60 
74 Thought could do everything   1.01 0.24 0.62 
75 Do impulsive things   1.03 0.32 0.49 

PSYCH     
76 People tell imagination   1.20 0.49 0.50 
77 Convinced others spying   0.85 0.55 0.55 
78 Think danger because someone plotting   1.55 0.56 0.48 
79 Think had special powers   2.00 0.41 0.51 
80 Think some force controlled   1.91 0.49 0.53 
81 See/hear things other people didn’t   1.64 0.47 0.49 

AGOR     
82 Avoid situation because afraid of anxiety attack   0.69 0.64 0.35 
83 Anxious going far away from home   1.06 0.59 0.53 
84 Anxious being in crowded places   0.54 0.64 0.61 
85 Anxious standing in long likes   0.80 0.64 0.54 
86 Anxious being on bridge or in tunnel   1.11 0.49 0.50 
87 Anxious traveling in bus, train, plane   1.09 0.49 0.57 
88 Anxious driving/riding in a car   1.12 0.51 0.49 
89 Anxious being home along   1.01 0.52 0.28 
90 Anxious being in open spaces   1.68 0.59 0.50 
91 Get anxious as soon as in situation   0.59 0.64 0.61 
92 Avoid situation because made you anxious    0.44 0.63 0.62 

SOC     
93 Worry about embarrassing self    0.08 0.52 0.64 
94 Worry you’d say something stupid -0.03 0.50 0.66 
95 Nervous when people pay attention -0.12 0.46 0.69 
96 Nervous in social situations   0.10 0.52 0.65 
97 Avoid situations because afraid embarrass self   0.34 0.57 0.64 
98 Worry public speaking   0.12 0.39 0.64 
99 Worry eating in front of others   0.85 0.47 0.49 

100 Worry using public restrooms   1.27 0.45 0.34 
101 Worry writing in front of others   1.08 0.43 0.39 
102 Worry saying something stupid   0.15 0.46 0.76 
103 Worry asking questions around others   0.27 0.44 0.72 
104 Worry business meetings   0.73 0.37 0.58 

 Note. MANIA = Mania, PSYCH = Psychosis, AGOR = Agoraphobia, & SOC = Social Phobia. 
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Table 2 (cont.) 

PDSQ Items, Threshold and Factor Loadings for Bifactor Model 

Domain/ 
Item 

Question Threshold Primary 
Loading 

Domain 
Loading 

105 Worry parties/social gatherings   0.38 0.46 0.74 
106 Get anxious as soon as in situation   0.24 0.53 0.66 
107 Avoid situations because made you anxious   0.20 0.54 0.62 

ALC     
108 Think drink too much   1.21 0.08 0.92 
109 Family say drink too much   1.51 0.18 0.86 
110 Doctor/friends say drink too much   1.68 0.13 0.88 
111 Think about cutting down on drinking   0.99 0.05 0.91 
112 Think had alcohol problem   1.55 0.11 0.83 
113 Problem with marriage because of drinking   1.64 0.19 0.84 

DRUG      
114 Think using drugs too much   1.54 0.19 0.93 
115 Family say use drugs too much   1.73 0.28 0.85 
116 Doctor/friends say use drugs too much   1.85 0.24 0.89 
117 Think about cutting down on drug use   1.34 0.26 0.89 
118 Think had a drug problem   1.74 0.17 0.89 
119 Problem with marriage because of drug use   1.71 0.29 0.86 

GAD     
120 Nervous person most days -0.05 0.56 0.43 
121 Worry bad things happened -0.08 0.59 0.36 
122 Worry about things shouldn’t -0.28 0.52 0.42 
123 Worry daily -0.48 0.52 0.67 
124 Feel restless because worrying -0.53 0.57 0.66 
125 Problem falling asleep because anxiety -0.45 0.49 0.47 
126 Tension in muscles because anxiety -0.57 0.53 0.42 
127 Trouble concentrating because worrying -0.73 0.58 0.57 
128 Snappy/irritable because worrying -0.73 0.45 0.42 
129 Hard to control worrying -0.51 0.54 0.69 

SOM     
130 Had a lot of stomach problems   0.19 0.35 0.46 
131 Bothered by aches/pains -0.14 0.41 0.53 
132 Get sick more than most people   0.85 0.35 0.75 
133 Health been poor most of life   1.26 0.35 0.64 
134 Doc not able to find cause for sick   1.02 0.37 0.47 

HYPO     
135 Worry might have serious illness  0.43 0.44 0.83 
136 Hard to stop worrying about illness  0.74 0.49 0.83 
137 Doctor said didn’t have illness   1.13 0.48 0.64 
138 Worry illness, interfere with activities  1.11 0.55 0.68 
139 Visit doctor much because worried about illness  1.26 0.46 0.65 

Note.ALC = Alcohol Abuse, DRUG = Drug Abuse, GAD = Generalized Anxiety, SOM = 
Somatoform, HYPO = Hypochondiasis.  
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 Tests of the statistical difference between models with and without the individual 

diagnostic domain (e.g., Drug Abuse, Mania) indicated that each of the 15 symptom domains 

contributed to model-data fit. This finding is supported by the consistently high domain loadings 

for items within each of the 15 domains. Figure 10 displays the log likelihoods for the model 

with all domains (log L = -215,149) and the 15 other models in which each of the domains was 

left out. The largest improvement in fit of the ALL model versus a model without a specific 

domain, was for the Bulimia Nervosa domain (log L = -220,044), indicating the strength of this 

group factor in accounting for the inter-item correlations. The smallest improvement in fit was 

for the Psychosis domain (log L = -215,342). Nevertheless, even for Psychosis the corresponding 

likelihood ratio chi-square statistic was statistically significant: –2(-215,342-(-215,149)) = 382, 

df = 6, p<.0001.  

Figure 10 
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Post-Traumatic Growth Inventory 

Samejima’s (1969) unidimensional graded response model and unrestricted and restricted 

multidimensional IRT models were fit to the PTGI scale data (N=801). Samejima’s (1969) model 

was fit to the data to compare its results to the bifactor model (Gibbons et al., 2007a) for 

polytomous data. For the multidimensional IRT models, the PTIG factor structure was first 

investigated using an IRT-based unrestricted factor analysis to address previous research 

questioning the stability of the scale’s factor structure across diverse samples (e.g., Ho et al., 

2004). Subsequently, a bifactor analysis of the original PTGI factor structure and results based 

on the exploratory analysis were conducted. For the data used in this study, overall scale score 

internal consistency (Cronbach’s alpha) was .96.  

Samejima’s (1969) unidimensional graded response model was fit to the PTGI data using 

MULTILOG (Thissen, Chen, & Bock, 2003). (Syntax to fit Samejima’s [1969] graded response 

model to scale data in MULTILOG is provided in Appendix A). Table 3 reports item slope and 

threshold estimates. Inspection of Table 3 shows that each item has a single slope value and each 

category (e.g., Strongly Disagree, Agree) has a unique threshold parameter value. As shown in 

the table, items 5, 10, and 21 were the most discriminating items. Figure 11 shows the IRFs of 

Item 1. It illustrates that the probability of selecting the next highest category increases 

monotonically with one’s standing on post-traumatic growth. 
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Table 3 

PTGI Parameter Estimates based on Samejima’s (1969) Graded Response Model 

Item Slope Threshold 1 Threshold 2 Threshold 3 Threshold 4 Threshold 5 
1 1.92 -0.83 -0.61 -0.13 0.53 1.48 
2 2.49 -0.67 -0.40  0.05 0.66 1.53 
3 2.44 -0.46 -0.17  0.24 0.96 1.78 
4 2.59 -0.58 -0.44 -0.08 0.54 1.38 
5 2.72 -0.36 -0.13  0.25 1.03 1.88 
6 2.18 -0.74 -0.46 -0.08 0.55 1.38 
7 2.11 -0.40 -0.10  0.45 1.27 2.11 
8 2.27  0.14  0.15  0.61 1.37 2.06 
9 2.61 -0.06  0.18  0.56 1.15 1.72 
10 3.32 -0.33 -0.14  0.24 0.94 1.60 
11 2.10  0.22  0.47  0.94 1.52 2.13 
12 1.91 -0.89 -0.54 -0.07 0.99 2.08 
13 2.04 -0.56 -0.35  0.04 0.81 1.82 
14 2.69 -0.60 -0.38  0.00 0.57 1.31 
15 2.60 -0.46 -0.25  0.18 0.84 1.62 
16 2.38 -0.62 -0.35 -0.06 0.50 1.24 
17 2.50 -0.52 -0.31  0.06 0.60 1.33 
18 2.24 -0.28 -0.06  0.23 0.74 1.38 
19 2.06 -0.98 -0.77 -0.41 0.47 1.53 
20 2.64 -1.16 -0.89 -0.59 0.13 0.90 
21 3.10 -0.78 -0.60 -0.31 0.28 0.94 

Note. Thresholds refer to categorical difficulty values, or the point on theta scale in which 

respondent has 50% probability of category endorsement. 
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Figure 11 

IRFs of PTGI Item 1  
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   Based on previous research questioning the robustness of the PTGI factor structure across 

groups (Ho et al., 2004; Sheikh & Marotta, 2005), a unrestricted full-information item factor 

analysis using the recently developed POLYFACT program was conducted. (Appendix B 

provides the syntax to run full-information item factor analysis for polytomous data.) Results 

based on a promax rotation supported a five factor solution. Specifically, the data seem to be 

explained in terms of a dominant factor and several minor factors, approximating the scale’s 

original theoretical factor structure (Tedeschi & Calhoun, 1996). Table 4 indicates that each item 

typically reported a dominant loading, with the exception of items 3, 6, 12, and 13. For 

comparison purposes, a limited-information exploratory factor analysis was also conducted using 

Mplus 4.0 (Múthen & Múthen, 1998-2006). As shown, the two approaches yielded similar 

results, with discrepancies occurring for items with high cross-loadings. Table 5 shows that the 

empirical factors were moderately correlated. 
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Table 4 

Full Information and Limited Information Unrestricted Item Factor Analysis of PTGI 

items 

Item Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 
 Full ULS Full ULS Full ULS Full ULS Full ULS 
1 -0.019 0.209  0.864 0.820  0.110 0.296 -0.006 0.136  0.018 0.256 
2 -0.097 0.318  0.714 0.677  0.129 0.285  0.042 0.239  0.237 0.337 
3  0.334 0.453  0.126 0.341  0.023 0.304 -0.121 0.127  0.551 0.508 
4  0.140 0.384  0.170 0.368 -0.057 0.256  0.147 0.313  0.562 0.524 
5  0.484 0.535  0.054 0.293  0.105 0.340 -0.012 0.231  0.346 0.394 
6  0.287 0.431  0.366 0.500 -0.251 0.164  0.123 0.289  0.400 0.367 
7  0.784 0.651  0.264 0.377 -0.109 0.202 -0.108 0.135  0.075 0.275 
8  1.018 0.731 -0.018 0.208  0.034 0.274  0.083 0.253 -0.191 0.211 
9  0.947 0.732 -0.113 0.173  0.138 0.358  0.077 0.245 -0.082 0.244 
10  0.554 0.594 -0.118 0.235  0.073 0.310 -0.001 0.260  0.481 0.480 
11  0.782 0.628 -0.100 0.171  0.105 0.332  0.005 0.218  0.113 0.266 
12  0.17 0.326  0.053 0.215  0.910 0.744 -0.079 0.148 -0.097 0.180 
13 -0.007 0.264  0.080 0.295  0.464 0.521 -0.051 0.165  0.420 0.416 
14 -0.131 0.296  0.269 0.454  0.013 0.330 -0.120 0.193  0.881 0.576 
15  0.072 0.390 -0.031 0.319 -0.006 0.311 -0.110 0.161  0.948 0.613 
16  0.015 0.412 -0.072 0.306 -0.134 0.226  0.197 0.342  0.898 0.512 
17  0.071 0.334  0.134 0.276  0.326 0.496  0.666 0.566 -0.111 0.235 
18  0.098 0.366 -0.027 0.207 -0.096 0.274  0.946 0.796  0.083 0.261 
19  0.080 0.312  0.073 0.217  0.939 0.722 -0.035 0.201 -0.070 0.232 
20 -0.149 0.267 -0.049 0.282  0.597 0.623  0.134 0.339  0.476 0.388 
21 -0.110 0.311 -0.080 0.304  0.216 0.426  0.088 0.320  0.859 0.585 

Note. Full = full-information item factor analysis. ULS = Unweighted least squares. 

Table 5 

Factor Correlations 

 Factors 
 1 2 3 4 5 
1 1.000     
2 0.650 1.000    
3 0.605 0.533 1.000   
4 0.622 0.512 0.619 1.000  
5 0.766 0.769 0.687 0.661 1.000 
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Next, the bifactor IRT model using Samejima’s (1969) graded response IRT model was 

used to analyze the item responses of the PTGI. The following two models were analyzed: (a) 

the original five factor model of the PTGI, as per Tedeschi and Calhoun (1996), and (b) a model 

based on the unrestricted FI item factor analysis. (Appendix C provides the syntax for fitting the 

bifactor model for graded response data within POLYFACT). 

 The bifactor model was fit to the data based on the original five-factor structure of the 

PTGI (Tedeschi & Calhoun, 1996), χ2
653 = 32,104.11. Table 6 reports primary factor loadings 

and factor loadings on the five sub-domains. As shown, items reported moderately high loadings 

on the primary factor (Factor 1), suggesting that the items were related to posttraumatic growth. 

Within this model, the most discriminating items on the primary factor were Item 21, λ21,1 = 

0.821, Item 10, λ10,1 = 0.819, and Item 5 λ5,1 = 0.781; whereas two of the least discriminating 

items were, for example, Item 1, λ1,1 = 0.640, and Item 12, λ12,1 = 0.663. Notably, similar 

findings were obtained based on Samejima’s (1969) graded response model. Secondary factor 

loadings were weak to moderate, with an average loading of 0.345. Table 7 reports item 

thresholds, while Table 8 shows the observed and expected proportions of respondents across 

categories. The root mean square error value of 0.022 indicates the difference between the 

observed and expected proportions (across all items and categories) was small, indicating 

substantial model data fit. Compared to the fit of the unidimensional model (χ2 = 33,249.29, df = 

674, p < .001), the bifactor model resulted in a statistical improvement in model fit (χ2
Difference = 

1,145.18, dfDifference = 21, p < .001).  

 

 

 



Multi-dimensional and hierarchical modeling monograph   52 

Table 6 

Full-Information Item Bifactor Analysis of PTGI Based on Original Five-Factor Model 

Item Primary Factor 1 Factor 2 Factor 3 Factor 4 Factor 5  
1 0.640 0.592     
2 0.725 0.571     
3 0.753 0.124     
4 0.761 0.204     
5 0.781 0.102     
6 0.690 0.325     
7 0.697 0.172     
8 0.703  0.454    
9 0.756  0.494    
10 0.819  0.271    
11 0.683  0.409    
12 0.663  0.095    
13 0.699   0.134   
14 0.761   0.545   
15 0.775   0.191   
16 0.732   0.282   
17 0.751    0.473  
18 0.715    0.619  
19 0.679     0.341 
20 0.761     0.595 
21 0.821     0.251 
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Table 7 

Item Thresholds Based on Full-Information Item Bifactor Analysis 

of Original PTGI Five-Factor Model 

Item  0-1 1-2 2-3 3-4 4-5 
1 -0.601 -0.431 -0.068 0.440 1.172 
2 -0.534 -0.299  0.086 0.619 1.337 
3 -0.355 -0.101  0.257 0.893 1.605 
4 -0.469 -0.343 -0.023 0.541 1.280 
5 -0.277 -0.069  0.283 1.000 1.758 
6 -0.573 -0.355 -0.040 0.487 1.167 
7 -0.293 -0.045  0.410 1.084 1.737 
8 -0.076  0.172  0.569 1.210 1.756 
9 -0.012  0.217  0.556 1.067 1.547 
10 -0.272 -0.086  0.282 0.940 1.575 
11  0.231  0.443  0.830 1.291 1.769 
12 -0.668 -0.396 -0.034 0.815 1.646 
13 -0.413 -0.252  0.068 0.701 1.505 
14 -0.500 -0.313  0.022 0.551 1.217 
15 -0.383 -0.195  0.201 0.809 1.491 
16 -0.502 -0.272 -0.026 0.466 1.109 
17 -0.413 -0.237  0.090 0.580 1.198 
18 -0.184 -0.012  0.233 0.677 1.189 
19 -0.733 -0.574 -0.298 0.423 1.290 
20 -0.987 -0.773 -0.504 0.135 0.839 
21 -0.697 -0.534 -0.259 0.293 0.926 
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Table 8 

Observed and Expected (in Italics) Proportions From the Original  

Five-Dimensional Graded Bifactor Analysis of PTGI Scale Data (N = 801) 

 0 1 2 3 4 5 
1 0.253 0.049 0.122 0.196 0.235 0.145 
 0.274 0.059 0.140 0.197 0.210 0.121 
2 0.272 0.067 0.132 0.201 0.215 0.112 
 0.297 0.086 0.152 0.198 0.177 0.091 
3 0.332 0.085 0.127 0.223 0.154 0.079 
 0.361 0.099 0.142 0.213 0.132 0.054 
4 0.297 0.040 0.107 0.205 0.215 0.136 
 0.320 0.046 0.125 0.215 0.194 0.100 
5 0.351 0.072 0.131 0.242 0.141 0.062 
 0.391 0.082 0.139 0.230 0.119 0.039 
6 0.262 0.066 0.110 0.200 0.208 0.154 
 0.283 0.078 0.123 0.203 0.192 0.122 
7 0.355 0.085 0.165 0.218 0.119 0.059 
 0.385 0.097 0.177 0.202 0.098 0.041 
8 0.427 0.091 0.146 0.192 0.087 0.056 
 0.470 0.098 0.147 0.172 0.074 0.040 
9 0.443 0.082 0.127 0.167 0.096 0.084 
 0.495 0.091 0.125 0.146 0.082 0.061 

10 0.352 0.062 0.132 0.232 0.136 0.085 
 0.393 0.073 0.145 0.216 0.116 0.058 

11 0.544 0.079 0.132 0.120 0.069 0.056 
 0.591 0.080 0.126 0.105 0.060 0.038 

12 0.241 0.079 0.122 0.310 0.180 0.069 
 0.252 0.094 0.140 0.306 0.158 0.050 

13 0.315 0.052 0.114 0.228 0.200 0.091 
 0.340 0.061 0.126 0.231 0.175 0.066 

14 0.288 0.056 0.112 0.194 0.202 0.147 
 0.308 0.069 0.132 0.200 0.179 0.112 

15 0.325 0.060 0.137 0.211 0.170 0.097 
 0.351 0.072 0.157 0.211 0.141 0.068 

16 0.286 0.072 0.085 0.185 0.201 0.171 
 0.308 0.085 0.097 0.190 0.187 0.134 

17 0.308 0.055 0.117 0.184 0.187 0.149 
 0.340 0.067 0.129 0.183 0.165 0.115 

18 0.382 0.064 0.095 0.161 0.151 0.147 
 0.427 0.068 0.097 0.159 0.132 0.117 

19 0.221 0.045 0.085 0.258 0.261 0.130 
 0.232 0.051 0.100 0.281 0.238 0.098 
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Table 8 (continued) 

20 0.165 0.047 0.065 0.213 0.257 0.252 
 0.162 0.058 0.087 0.247 0.246 0.201 

21 0.232 0.041 0.076 0.195 0.228 0.227 
 0.243 0.054 0.101 0.217 0.207 0.177 

  

 Second, the bifactor model based on the results of the unrestricted FIFA was fit to the 

data, χ2
653 = 32,054.82. Table 9 reports primary factor loadings and factor loadings on the five 

sub-domains. Similar to previous results, items reported moderately high loadings on the primary 

factor (Factor 1). Approximately half of the items reported slightly higher loadings on the 

primary factor compared to the results reported in Table 6. Within this model, the three most 

discriminating items were Item 21, λ21,1 = 0.839, Item 10, λ10,1 = .801, and Item 15 λ15,1 = 0.776; 

whereas the least discriminating items were Item 11, λ11,1 = 0.663, and Item 1, λ1,1 = 0.681, 

respectively. On average, secondary loadings were higher for this model than for the original 

PTGI model, indicating substantial residual association. Average loadings on the secondary 

factors were 0.375. Individual tests of the added value of each group factor resulted in a 

significant improvement in model fit with the inclusion of the group factor (ps < .001), indicating 

that each domain contributed to accounting for the relationships among items. 

 Table 10 reports item thresholds, while Table 11 shows the observed and expected 

proportions of respondents across categories. The root mean square error value of .018 indicates 

the difference between the observed and expected proportions (across all items and categories) 

was small, indicating substantial model data fit. Compared to the fit of the unidimensional model 

(χ2
674 = 33,249.29, p < .001), the model resulted in a statistical improvement in model fit 

(χ2
Difference = 1,194.47, dfDifference = 21, p < .001).  
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Table 9 

Full-Information Item Bifactor Analysis of PTGI based on Unrestricted Factor 

Analysis Results 

Item General Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 
1 0.681  0.550    
2 0.765  0.522    
3 0.747 0.159     
4 0.767     0.216 
5 0.770 0.245     
6 0.682     0.340 
7 0.682 0.372     
8 0.672 0.527     
9 0.726 0.518     
10 0.801 0.334     
11  0.663 0.449     
12 0.669 0.112     
13 0.714   0.195   
14 0.775     0.329 
15 0.776     0.213 
16 0.714     0.483 
17 0.760    0.465  
18 0.714    0.623  
19 0.691   0.421   
20 0.786   0.434   
21 0.839     0.149 
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Table 10 

Item Thresholds Based on Full-Information Item Bifactor Analysis 

of Re-specified PTGI Five-Factor Model 

Item  0-1 1-2 2-3 3-4 4-5 
1 -0.607 -0.436 -0.068 0.446 1.178 
2 -0.538 -0.304   0.087 0.620 1.346 
3 -0.354 -0.103   0.252 0.881 1.580 
4 -0.473 -0.351 -0.033 0.531 1.276 
5 -0.276 -0.072   0.274 0.981 1.729 
6 -0.580 -0.365 -0.050 0.484 1.162 
7 -0.288 -0.039   0.405 1.062 1.703 
8 -0.076  0.168   0.559 1.186 1.715 
9 -0.016  0.210   0.546 1.047 1.513 
10 -0.267 -0.083   0.279 0.825 1.539 
11  0.228  0.437   0.819 1.271 1.734 
12 -0.663 -0.393 -0.032 0.810 1.631 
13 -0.401 -0.246   0.068 0.697 1.495 
14 -0.493 -0.308   0.030 0.552 1.206 
15 -0.377 -0.192   0.199 0.796 1.475 
16 -0.492 -0.269 -0.030 0.457 1.093 
17 -0.407 -0.232   0.092 0.576 1.189 
18 -0.181 -0.012   0.230 0.672 1.177 
19 -0.736 -0.575 -0.298 0.417 1.272 
20 -1.015 -0.772 -0.496 0.150 0.822 
21 -0.711 -0.540 -0.257 0.291 0.906 
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Table 11 

Observed and Expected (in Italics) Proportions from the Re-specified 

Five-Dimensional Graded Bifactor Analysis of PTGI Scale Data (N = 801) 

 0 1 2 3 4 5 
1 0.253 0.049 0.122 0.196 0.235 0.145 
 0.272 0.060 0.141 0.199 0.208 0.119 
2 0.272 0.067 0.132 0.201 0.215 0.112 
 0.295 0.085 0.154 0.198 0.178 0.089 
3 0.332 0.085 0.127 0.223 0.154 0.079 
 0.362 0.098 0.140 0.212 0.132 0.057 
4 0.297 0.040 0.107 0.205 0.215 0.136 
 0.318 0.045 0.124 0.215 0.197 0.101 
5 0.351 0.072 0.131 0.242 0.141 0.062 
 0.391 0.080 0.137 0.229 0.121 0.042 
6 0.262 0.066 0.110 0.200 0.208 0.154 
 0.281 0.077 0.122 0.206 0.192 0.123 
7 0.355 0.085 0.165 0.218 0.119 0.059 
 0.387 0.098 0.173 0.199 0.100 0.044 
8 0.427 0.091 0.146 0.192 0.087 0.056 
 0.470 0.097 0.145 0.170 0.075 0.043 
9 0.443 0.082 0.127 0.167 0.096 0.084 
 0.395 0.072 0.143 0.213 0.116 0.062 

10 0.352 0.062 0.132 0.232 0.136 0.085 
 0.395 0.072 0.143 0.213 0.116 0.062 

11 0.544 0.079 0.132 0.120 0.069 0.056 
 0.590 0.079 0.125 0.105 0.061 0.041 

12 0.241 0.079 0.122 0.310 0.180 0.069 
 0.254 0.094 0.140 0.304 0.157 0.051 

13 0.315 0.052 0.114 0.228 0.200 0.091 
 0.344 0.059 0.124 0.230 0.176 0.067 

14 0.288 0.056 0.112 0.194 0.202 0.147 
 0.311 0.068 0.133 0.197 0.177 0.114 

15 0.325 0.060 0.137 0.211 0.170 0.097 
 0.353 0.071 0.155 0.208 0.143 0.070 

16 0.286 0.072 0.085 0.185 0.201 0.171 
 0.311 0.083 0.094 0.188 0.187 0.137 

17 0.308 0.055 0.117 0.184 0.187 0.149 
 0.342 0.066 0.128 0.1871 0.165 0.117 

18 0.382 0.064 0.095 0.161 0.151 0.147 
 0.428 0.067 0.096 0.158 0.131 0.120 

19 0.221 0.045 0.085 0.258 0.261 0.130 
 0.231 0.052 0.100 0.279 0.237 0.102 
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Table 11 (continued) 

 0 1 2 3 4 5 
20 0.165 0.047 0.065 0.213 0.257 0.252 
 0.155 0.065 0.090 0.250 0.235 0.206 

21 0.232 0.041 0.076 0.195 0.228 0.227 
 0.239 0.056 0.104 0.216 0.203 0.182 

  

Jenkin’s Acitivity Survey 

 An unrestricted FIFA was conducted on the Jenkin’s Activity Survey using the item 

responses of 600 men from central Finland drawn from a larger survey sample. Items are 

predominantly rated on three-point scales representing little or no, occasional, or frequent 

occurrence of the activity or behavior in question (e.g., pace of eating). Wording in the positive 

and negative direction varies across items. For this example, the item responses were recoded to 

provide an example of FIFA using dichotomous data. Appendix D provides the POLYFACT 

syntax for this analysis (including the recode procedure). Results indicated the presence of four 

distinguishable factors. Table 12 reports the factor loadings, based on promax rotation. Item and 

factor correspondences are judged based on the magnitude of the loading, irrespective of the 

loadings sign. Strong, positive loadings indicate that one’s endorsement of the item corresponds 

to an increased standing on the underlying factor. On the other hand, a strong, negative loading 

suggests that an individual with a low standing on the underlying factor corresponds to an 

endorsement of the lowest response category. This would occur, for example, on a depression 

item (“Have you felt depressed over the past few days”) administered to a non-depressed 

respondent. As shown, the numbers of items corresponding to each factor are 12, 9, 6, and 5. 

Strong consideration of the substantial cross-loadings of several items (e.g., Q269, Q313, Q276) 

should be ignored due to the collapsing of response categories. The percent of explained variance 

for each of the four factors was: 33.616, 15.803, 10.020, and 5.306, respectively.  
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Table 12 

Factor Loadings of Jenkin’s Activity Survey based on Promax Rotation 

 Factor 
 Item 1 2 3 4 
1 Q156  0.325  0.148 -0.063 -0.055 
2 Q157 -0.211  0.131  0.239  0.203 
3 Q158 -0.120 -0.560  0.055 -0.186 
4 Q166 -0.124 -0.767 -0.082  0.265 
5 Q247  0.364  0.550 -0.125  0.064 
6 Q251  0.295  0.088 -0.166 -0.349 
7 Q252  0.168  0.133 -0.149 -0.633 
8 Q253  0.112  0.549 -0.217 -0.059 
9 Q254  0.323  0.165 -0.630  0.080 
10 Q257  0.030 -0.152 -0.784 -0.250 
11 Q258  0.092 -0.121  0.670  0.001 
12 Q259  0.381 -0.146  1.050  0.069 
13 Q260  0.801 -0.069  0.275 -0.123 
14 Q261  0.798  0.207  0.225 -0.111 
15 Q262  0.824  0.226  0.292 -0.127 
16 Q263 -0.463  0.054 -0.282 -0.641 
17 Q265  0.120  0.006 -0.681 -0.278 
18 Q266  0.913  0.024  0.104  0.228 
19 Q267  0.197 -0.377 -0.454 -0.515 
20 Q268 -0.123 -0.372 -0.064 -0.736 
21 Q269  0.444 -0.232 -0.376 -0.367 
22 Q270  0.809 -0.077  0.058 -0.065 
23 Q272  0.446  0.212  0.040 -0.139 
24 Q273 -0.012 -0.713  0.308 -0.206 
25 Q275 -0.118 -0.795 -0.143  0.254 
26 Q276  0.285 -0.650  0.273 -0.353 
27 Q279  1.095 -0.027 -0.078  0.522 
28 Q280  1.115 -0.161 -0.111  0.586 
29 Q307  0.685  0.074 -0.364  0.049 
30 Q308  0.737 -0.113 -0.108 -0.079 
31 Q313 -0.046 -0.797 -0.085 -0.532 
32 Q314  0.246 -0.730 -0.157  0.019 

Note. Bolded items indicate highest factor loadings. 

 Table 13 reports factor correlations, indicating the relationship between the underlying 

traits. As shown, low to moderate correlations were reported between Factors 1 and 2 and 
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Factors 3 and 4. On the other hand, moderate negative correlations were reported between Factor 

1 and Factors 3 and 4. 

Table 13 

Correlation between Factors underlying Jenkin’s Activity Survey Data 

 1 2 3 4 
1  1.000    
2  0.243  1.000   
3 -0.427 -0.160 1.000  
4 -0.518 -0.053 0.322 1.000 

  

 The aforementioned examples demonstrate the use of multidimensional IRT models in 

health outcomes research. The first example tested the PDSQ factor structure. The theoretically-

based 15 sub-domains of the scale provided the basis to conduct a confirmatory-based FIFA 

using the bifactor model (Gibbons & Hedeker, 1992). The bifactor solution was of interest as the 

scale is designed to (a) serve as a general psychiatric screening instrument, and (b) provide 

clinical information on a range of symptom domains (e.g., Mania, Major Depression Disorder, 

Alcohol Abuse). The second example was based on breast cancer survivor data from the PTGI 

(Tedeschi & Calhoun, 1996). Empirical evidence questioning the stability of the PTGI factor 

structure across samples justified conducting an unrestricted factor analysis prior to fitting the 

bifactor model to the data. Finally, analysis of the Jenkin’s activity scale demonstrated the recode 

of variables to conduct unrestricted analyses on dichotomous data. Implications of these analyses 

are briefly reviewed. 

 Results of the first study suggested that the bifactor model provided a plausible 

description of the PDSQ scale data. The correlation between observed and estimated symptom 

response items over the 139 items was r = 0.9992. Relative to a unidimensional model, the 

bifactor model with all 15 symptom domains provided a significant improvement in fit relative to 
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both the unidimensional model, and each of the 15 bifactor models with 14 domains (i.e., leaving 

one domain out in each). Secondary factor loadings were generally moderate to large, indicating 

a substantial relationship between the observed and latent variables.  These findings indicate that 

all of the 15 symptom domains are required to adequately model these data. That is, they provide 

evidence for the validity of these 15 diagnostic symptom domains. While all items are correlated 

through their relationship to the primary mental illness dimension, loadings on each of the 15 

diagnostic symptom domains reveal that they are non-zero and reflect their relative 

independence. Furthermore, results clearly indicate that inclusion of these domains dramatically 

improves the fit of the model over a unidimensional model that does not consider the group 

factors; this does not necessarily mean that they are qualitatively distinct “diseases.”    

The structure of the PTGI was modeled in terms of unidimensional and multidimensional 

IRT models. Samejima’s (1969) graded response model was fit to the data to provide a basis to 

illustrate the effect of fitting a unidimensional model to multidimensional data. A subsequent 

dimensionality assessment of the PTGI based on an unrestricted factor analysis indicated that the 

scale deviated from its original factor structure postulated by Tedeschi and Calhoun (1996). 

Specifically, results suggested a primary domain in addition to minor group factors. Suggestion 

of a primary domain underlying the scale data is not surprising given the sampling of items from 

sub-domains related by a broad post-traumatic growth factor.  

Overall model fit and parameter estimated supported the fit of the bifactor model to the 

PTGI scale data. Specifically, moderate to high factor loadings were reported on the primary 

dimension, combined with low to moderate loadings on the group factors. As such, the primary 

dimension was found to be an important component for accounting for the relationship among 

scale items. Furthermore, the EAP trait estimates on the primary dimension are adjusted in 
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consideration of the group factors. Results of this research complement other research that has 

reported that the bifactor model can contribute to modeling scale data in health outcomes 

research (e.g., Chen, West, & Sousa, 2006; Gibbons & Hedeker, 1992; Gibbons et al., 2007; 

Reise, Morizot, & Hays, in press).    

An unrestricted FIFA of the Jenkin’s Activity Scale (1972) supported a four factor 

solution. Although currently available POLYFACT program now facilitates analyzing this scale 

without recoding the data, nevertheless this example serves to demonstrate the program’s 

capabilities. For this analysis, results supported the presence of four factors underlying the scale 

data. Factor correlations were low to moderate, indicating the distinctiveness of emergent 

factors. 

11. Computer adaptive testing (CAT) 

a. Underlying theory 

The past thirty years have witnessed an exponential increase in the use of test 

administration within the framework of CAT. Within health outcomes research, for example, 

adaptive tests have been found to be more efficient than conventional tests (Fliege, Becker, 

Walter, Bjorner, Klapp, & Rose, 2005; Ware, Bjorner, & Kosinski, 2000). That is, in an adaptive 

test a given level of measurement precision can be reached much more quickly than in a test in 

which all examinees are administered the same items. This situation results from selecting items 

that are most informative for an individual at each stage of test administration in the adaptive 

test. Typical adaptive tests result in a 50% average reduction in number of items administered, 

and some reductions in the range of 80% to 90% have been reported, with no decrease in 

measurement quality (Brown & Weiss, 1977). In addition, as has been indicated, adaptive tests 

allow control over measurement precision. Thus, adaptive tests result in measurements that are 
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both efficient and effective. Recent research (Gibbons et al., 2007b) using the 615 items of the 

Mood-Anxiety Spectrum Disorders Scale (MASS) has shown test length reductions due to 

adaptive testing procedures (based on the bifactor model) averaging 95% (615 to and average of 

24 items for the general dimension), in both post-hoc simulation and live testing, on the General 

dimension of the MASS. Actual testing time required to score the General scale and the four 

content scales was reduced from an average of 115 minutes to 22 minutes.  

 Research since the 1970s has shown that adaptive testing procedures are most effective 

when combined with IRT procedures (e.g., Kingsbury & Weiss, 1980, 1983; McBride & Martin, 

1983). Thus, an item bank for use in adaptive testing can be calibrated according to an IRT 

model. The point at which a test is to be started (frequently referred to as the “entry point”) can 

be determined by taking into account individual status variables or other data about an individual 

(e.g., previous scores, age, gender, clinical evaluations). Explicit procedures for estimating an 

entry point for an adaptive test are available in conjunction with IRT using Bayesian statistical 

methods (e.g., Baker, 1992, Chap. 7; Weiss & McBride, 1984). IRT procedures for estimating an 

individual’s trait level are applicable to the adaptive testing process. Procedures of maximum 

likelihood or Bayesian estimation permit estimation of trait, or in this case impairment levels, 

based on one or more responses made by a single individual in an adaptive test. Thus, a 

continuous updating of the impairment level can be accomplished after each item is administered 

in an adaptive test, and the next item to be administered can be based on the impairment estimate 

derived from all previous items administered. Item selection rules derived from IRT and adaptive 

testing can explicitly use concepts of item information (Hambleton & Swaminathan, 1985, Chap. 

6; Weiss, 1985). Thus, at a given current impairment estimate the most informative item not yet 

administered can be chosen for administration. When items are selected using this maximum 
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information item selection rule, the net effect is an extremely efficient procedure for reducing the 

error of measurement at each successive stage in the administration of an adaptive test (Weiss, 

1985).  

 Finally, adaptive testing procedures developed in accordance with IRT can take 

advantage of a number of different procedures for terminating an adaptive test. One procedure 

frequently applied, however, is to reduce the individualized standard error of measurement 

(SEM) to an a priori specified level before a test is terminated (Weiss & Kingsbury, 1984). This 

technique allows the number of items administered to an individual to vary, but it also results in 

control of the resultant level of SEM for the individual tested and through the standard errors the 

reliability of scores. Thus, for the individual who responds essentially in accordance with the 

IRT model, a given level of SEM will be achieved more quickly than for an individual who does 

not respond in accordance with the IRT model, resulting in a slower reduction of the 

individualized SEM. 

b. Case study - PDSQ example 

 A demonstration of CAT in the context of PRO testing is provided by conducting a post-

hoc simulation administration of the PDSQ (Zimmerman & Mattia, 2001). Post-hoc simulation 

of the PDSQ full scale and subscale items within a CAT environment was conducted using 

POSTSIM 2.0 (Weiss, 2005). The premise of the program is to simulate the administration of a 

particular scale within a CAT setting using previously obtained data. Therefore, with examinee 

scale data and previously estimated item parameters (e.g., discrimination, difficulty) the test is 

re-administered within the framework of CAT to: (a) estimate the number of items that each 

individual would need to be administered to obtain an accurate trait estimate, (b) identify the 

items used to assess each respondent, and (c) determine the point on the trait continuum (e.g., 
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depression, drug use) where the instrument provides the most informative measurement (e.g., 

low, middle, high).  

For the PDSQ data, POSTSIM 2.0 (Weiss, 2005) modeled each respondent’s probability 

of a “Yes” response based on a previously estimated item bifactor model. The program provides 

options for score estimation, item selection, and termination of testing. A range of prior 

distributions (e.g., -3, -2, 0, 1, etc.) were placed on examinees’ initial theta estimates (e.g., level 

of depression) to investigate the effect this had on item administration. Bayes EAP scores were 

used to indicate trait levels. Item administration was based on selecting the next item that had the 

maximum amount of information for trait estimation, which results in the fastest decrease in the 

standard error in measurement (SEM) (Weiss, 2005). Last, two fixed SEM termination criteria to 

stop testing were investigated: (a) after the information of the next item to be administered fell 

below 0.30, and (b) after the information of the next item to be administered fell below 0.40.  

Results of Post-hoc simulation of CAT 

 Post-hoc simulation of PDSQ full scale items was conducted first to determine the 

number of items required to obtain trait estimates on the general psychiatric dimension. 

Subsequently, the analysis was conducted for each of the 15 PDSQ subscales, separately. 

Statistics used to judge the efficiency of the CAT session included: (a) the correlation between 

the full theta and CAT theta, with acceptable values above 0.90; (b) mean/average signed 

difference between full theta and CAT theta, with values close to zero desired; (c) mean/average 

absolute difference between full theta and CAT theta, with values close to zero desired; and (d) 

mean number of items administered. 

Post-hoc simulation of the PDSQ full scale items (n = 139) was conducted. Table 14 

reports the CAT results for this analysis based on a fixed SEM termination of .40. As shown, 
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regardless of the implied prior distribution, the correlation between the CAT theta and full theta 

were virtually the same, as was the mean number of items administered. This indicated that the 

initially specified trait distribution did not influence trait estimation. However, the correlation 

between the CAT theta and full theta estimates was lower than the desired (< 0.90), indicating 

less than acceptable trait estimates. On average, less than 11 of the total 139 PDSQ items were 

administered, with only 5 items administered in some cases and all 139 items in other instances.   

Table 14 

CAT Results of Fixed Standard Error of Measurement Termination of 0.40 

General Factor 
(139 items)  

SEM 

Prior θ 0,1 1,1 2,1 3,1 -1,1 -2,1 -3,1 
r (θ)   0.838   0.836  0.840  0.840  0.842  0.838  0.842 
Mean θ diff  -0.182   -0.186 -0.149 -0.149 -0.160  -0.161  -0.165 
Mean abs diff  0.382  0.382  0.371  0.371  0.374  0.378  0.377 
Mean no. items 10.117 10.175 10.987 10.987 10.426 10.537 10.887 
Range items 5-139 5-139 5-139 5-139 5-139 6-139 6-139 
Note: r (θ) = correlation of full theta and CAT theta; Prior (θ) = Prior distribution of  
examinee trait estimate; Mean θ diff = Mean/average signed difference between full  
theta and CAT theta; Mean abs diff. = Mean/average absolute difference between full 
 theta and CAT theta; Mean no. items = Mean number of items administered to estimate  
CAT theta. 

 
 Next, post-hoc simulation of the PDSQ full scale items was conducted using a more 

restrictive fixed SEM termination of 0.30. As reported in Table 15, the prior distribution did not 

appreciably affect results. Inspection of the table indicates that the correlation between the CAT 

theta and full theta exceeded the cutoff value of 0.90, with all values nearly equal within 

rounding. The mean number of items administered was 22, or double the number required when 

the fixed SEM termination was set at 0.4. Furthermore, acceptable trait estimates were obtained 

by administering about 117 less items than the total scale. As shown, the number of items 

administered ranged between 10 and 139. 
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Table 15 

        CAT Results of Fixed Standard Error of Measurement Termination of 0.30 

General Factor 
(139 items)  

SEM 

Prior θ 0,1 1,1 2,1 3,1 -1,1 -2,1 -3,1 
r (θ)  0.925  0.927  0.924  0.924  0.925  0.924  0.925 
Mean θ diff -0.153 -0.155 -0.142 -0.142 -0.147 -0.155 -0.159 
Mean abs diff  0.262  0.259  0.260  0.260  0.260  0.264  0.266 
Mean no. items 21.239 21.457 22.276 22.276 21.700  21.680  22.044 
Item Range 10-139 10-139 11-139 11-139 11-139 11-139 11-139 
Note: r (θ) = correlation of full theta and CAT theta; Prior (θ) = Prior distribution of 
examinee trait estimate; Mean θ diff = Mean/average signed difference between full 
theta and CAT theta; Mean abs diff. = Mean/average absolute difference between full 
theta and CAT theta; Mean no. items = Mean number of items administered to estimate 
CAT theta. 

 
 The next analysis conducted a post-hoc simulation of PDSQ subscales. Based on the 

previous finding that trait estimation was not affected by the imposed prior distribution, a normal 

prior was used in subsequent analyses. Table 16 reports CAT results for each of the PDSQ 

subscales based on a fixed SEM termination of 0.4. Inspection of the results indicates that the 

correlation between the CAT theta and full theta was generally contingent on the number of 

items within the respective subscale. For instance, correlations were higher for subscales with 

greater than 10 items, with the exception of the Hypochondriasis subscale. However, these 

correlations were less than 0.90 for most of the subscales comprised of less than 10 items, 

including MANIA and PSYCH. For MANIA, an average of 1 item was administered, indicating 

that no other items contributed to trait estimation based on this fixed SEM termination criteria.  

Mean differences between the CAT theta and full theta indicated differences less than a 

half of a point, suggesting accurate CAT trait estimates. As shown, the mean number of items 

administered within each subscale was less than half of the total number of subscale items, a 

50% reduction in the total number of administered items. For several of the subscales comprised 
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of less than 10 items, an average of 1 item was administered. Specifically, it appears that one 

item provided the most information for trait estimation in the MANIA, PSYCH, ALC, and 

DRUG subscales, each consisting of 6 items. Overall, an average of 56 items is required, which 

represents a 60% reduction in item administration relative to the full scale. 

The next analysis conducted a post-hoc simulation of the subscale items with a fixed 

SEM termination of 0.30. As reported in Table 17, with the exception of MANIA, all subscale 

CAT thetas reported correlations at or above 0.90 with full thetas. Compared to the fixed SEM 

termination of 0.40, the correlations reported in this condition were not substantially larger, 

except for the subscales with less than 10 items (e.g., PSYCH, ALC). As expected, the mean 

difference between CAT theta and full theta decreased across subscales with this less stringent 

termination criterion. Inspection of the table indicates that on average the mean number of items 

increased by one, or two, items, depending on the number of subscale items. Furthermore, the 

range of the administered items decreased, as the lower range value generally increased by one 

or two items, whereas the upper range value typically remained unchanged. Overall, an average 

of 79 items is required, which represents a 43% reduction in item administration relative to the 

full scale. 
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Table 16 

POSTSIMS Results of Simulated Administration of Group Factor Items – Terminate When Item Information is below .40 

 Group Factor 
 MDD DYS PTSD BUL OCD PAN MANIA PSYCH AGOR SOC ALC DRUG GAD SOM HYPO 

No. 
Items 

21 7 15 10 8 8 6 6 11 15 6 6 10 5 5 

Prior θ (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) 
 r (θ) .951 .962  .981  .952  .906  .966  .742  .816 .976 .969 .899 .899 .941 .925 .980 
Mean θ 
diff 

.150 .015 -.095 -.086 -.191 -.095 -.159 -.280 -.191 -.091 -.038 -.048 .092 -.130 -.041 

Mean 
abs. 
Diff. 

.239 .165  .178  .215  .340  .241  .442  .399 .263 .202 .219 .147 .299 .248 .091 

Mean 
no. 
items 

5.28 4.79 8.83 3.70 2.62 4.15 1.00 1.00 4.64 8.51 1.00 1.00 3.82 2.20 3.00 

Item 
Range 

4-7 3-7 4-14 2-8 2-6 3-6 1-1 1-1 3-8 4-13 1-1 1-1 3-5 2-3 2-5 

Note: r (θ) = correlation of full theta and CAT theta; Mean θ diff = Mean/average signed difference between full theta and CAT theta; 
Mean abs diff. = Mean/average absolute Difference between full theta and CAT theta; Mean no. items = Mean number of items 
administered to estimate CAT theta. 1 = Major Depression (MDD); 2 = Dysthymia (DYS), 3 = Post-Traumatic Stress (PTSD); 4 = 
Bulimia Nervosa (BUL); 5 = Obsessive Compulsive (OCD); 6 = Panic (PAN); 7 = Mania (MANIA); 8 = Psychosis (PSYCH); 9 = 
Agoraphobia (AGOR); 10 = Social Phobia (SOC); 11 = Alcohol Abuse (ALC); 12 = Drug Abuse (DRUG); 13 = Generalized Anxiety 
(GAD); 14 = Somatoform (SOM); 15 = Hypochondriasis (HYPO). 
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Table 17 

POSTSIMS Results of Simulated Administration of Group Factor Items – Terminate When Item Information is Below .30 

 Group Factor 
 MDD DYS PTSD BUL OCD PAN MANIA PSYCH AGOR SOC ALC DRUG GAD SOM HYPO 

No. 
Items 

21 7 15 10 8 8 6 6 11 15 6 6 10 5 5 

Prior θ (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) 
 r (θ) .964  .968  .986  .976  .908  .981  .879  .942  .948  .985  .942  .899 .956  .956  .980 
Mean θ 
diff 

.123 -.011 - .082 -.081 -.191 -.053 -.094 -.182 -.038 -.069 -.042 -.048 .076 -.054 -.041 

Mean 
abs. 
Diff. 

.203  .011  .149  .154  .337  .149  .282  .247  .038  .138  .042  .147 .261  .186  .091 

Mean 
no. 
items 

6.07 6.29 9.84 5.35 2.70 5.63 2.53 2.33 5.40 10.15 2.79 1.00 4.46 3.00 3.00 

Item 
Range 

5-8 5-7 5-14 3-10 2-6 4-8 2-6 2-6 3-10 6-14 2-6 1-1 4-5 3-3 2-5 

Note: r (θ) = correlation of full theta and CAT theta; Mean θ diff = Mean/average signed difference between full theta and CAT theta; 
Mean abs diff. = Mean/average absolute Difference between full theta and CAT theta; Mean no. items = Mean number of items 
administered to estimate CAT theta. 1 = Major Depression (MDD); 2 = Dysthymia (DYS), 3 = Post-Traumatic Stress (PTSD); 4 = 
Bulimia Nervosa (BUL); 5 = Obsessive Compulsive (OCD); 6 = Panic (PAN); 7 = Mania (MANIA); 8 = Psychosis (PSYCH); 9 = 
Agoraphobia (AGOR); 10 = Social Phobia (SOC); 11 = Alcohol Abuse (ALC); 12 = Drug Abuse (DRUG); 13 = Generalized Anxiety 
(GAD); 14 = Somatoform (SOM); 15 = Hypochondriasis (HYPO). 
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12. Review of available software 

BILOG-MG 

BILOG-MG is a windows-based IRT program designed for the analysis of binary items 

including multiple-choice or short answer items scored right, wrong, omitted, or not-presented. It 

is effective for the application of the 1-, 2-, and 3- PL unidimensional models. It is a large-scale 

production application and capable of handling an unlimited number of items and respondents, 

thus making it a valuable tool for all stages of scale development and maintenance. It can 

simultaneously conduct item analysis and scoring for any size subtests or subscales. Parameter 

estimation is based on the method of Bock and Aitkin (1981). Output for resultant parameter and 

scoring estimates are in files suitable for purposes of subsequent analyses or score reporting.  

 Additionally, the program extends the IRT models to multiple group analysis. 

Applications in educational and clinical settings include: Differential item functioning (DIF), 

vertical scaling, nonequivalent groups equating to maintain scale comparability as new test forms 

are designed, detecting item parameter drift over time, calibrating and scoring tests in two-stage 

testing procedures to reduce total testing-time, and estimating latent ability or proficiency 

distributions for diverse populations (e.g., students, patients). 

MULTILOG 

MULTILOG extends the capabilities of BILOG-MG by also modeling MULTIple categories 

through the use of LOGistic IRT models. In addition to the traditional IRT models, multi-

categorical models include: Samejima’s (1969) graded response model, Bock’s (1972) nominal 

(non-ordered) response model, and Thissen and Steinberg’s (1984) model for multiple – choice 

items. As such, it provides a powerful IRT program for the analysis of items comprised of 

multiple response categories, such as Likert-type scales (e.g., strongly disagree – strongly agree). 
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MML is used for item parameter estimation in the presence of unknown trait values, and ML 

estimates with known trait values. The likelihood-ratio chi-square statistic provides a measure of 

model-data fit. The difference between likelihood-ratio chi-square statistics based on models in 

which specific item parameters are either constrained or freely estimated across two groups (e.g., 

males vs. females) provides the basis for investigations of differential item functioning, or item 

bias. The program also is effective for equating analyses.   

TESTFACT 

The TESTFACT program is capable of implementing all the procedures of classical item 

analysis, test scoring, and factor analysis of inter-item tetrachoric correlations. Additionally, it 

can conduct exploratory IRT-based full-information factor analysis (FIFA) for an unlimited 

number of items and a maximum of fifteen factors. Additionally, it can model data with an 

underlying bifactor structure. Its simulation feature enables it to simulate various data types, 

based on user specified parameters (e.g., slopes, thresholds). As with the other IRT programs 

resultant output files can be used for subsequent statistical analyses and test score reporting. 

For the exploratory FIFA, three distinct methods of multidimensional numerical integration 

for the E-step of the EM algorithm are provided, including: adaptive quadrature, non-adaptive 

quadrature, and Monte Carlo integration. Both adaptive and non-adaptive methods can be used to 

estimate scores on each factor. Estimation of the classical reliability of the factor scores is also 

available.  

For the confirmatory full-information bifactor analysis, Bayes estimation of scores on the 

general factor is included, as well as standard errors that account for variation among responses 

due to the group factors.  
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POLYFACT 

POLYFACT is newly developed IRT software  that expands the capacity of TESTFACT 

by providing for polytomously scored items. It also includes the dichotomous and polytomous 

bifactor models of Gibbons and co-workers (2007a). 

13.  Summary and Conclusions 

 The emergent use of self-report instruments in health outcomes research settings provides 

the basis for applying state-of-the-art analyses to determine the extent to which obtained scores 

can be used for subsequent decision-making purposes. As shown, practitioners and researchers 

alike are faced with notable decisions when modeling such data. As a psychometric technique, 

IRT offers a powerful, flexible method to handle PRO measurement data throughout all stages of 

scale development, maintenance, and scoring. Nevertheless, the use of advanced modeling 

procedures (i.e., IRT) has so far received comparative little use on psychological research 

(Borsboom, 2007). Until recently, the unidimensionality and local independence requirements of 

IRT have largely limited its use with modeling psychological scale data, which is typically 

multidimensional. This should change as the advancements in IRT discussed here permit its use 

for dimensionality assessment and scoring of scales in studies that are both exploratory and 

confirmatory in nature. 

For the field of health outcomes research, the variety of IRT models provides a host of 

data analytic tools to handle both dichotomously and polytomously scored items. Full-

information item factor analysis extends the traditional unidimensional models to IRT-based 

methods to handle complex data structures (e.g., more than one underlying latent variable). 

These methods are now extended to polytomously scored items. These advancements enable 
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PRO researchers to apply IRT-based procedure through all phases of test development and 

scoring.  

As was presented, there are a host of IRT models to analyze various types of PRO data. 

Traditional unidimensional IRT models have received the most extensive treatment across 

testing contexts. Most promising to modeling PRO scale data are the recently developed 

multidimensional IRT models. The item factor analytic IRT models overcome the restrictive 

requirement of a unidimensional test structure, an untenable assumption in most PRO testing 

situations. Until recently, the IRT-based factor analytic procedures were exploratory in nature. 

Specifically, they did not (a) rely on a priori information to determine the number of underlying 

latent traits, and (b) provide researchers the ability to specify the relationships between items and 

factors. These methods relied on testing the statistical difference between the likelihood values of 

models with and without a factor to determine the number of underlying latent traitS.   

Gibbons and Hedeker (1992) and Gibbons et al. (2007a) derived the full-information item 

bifactor model for dichotomously and polytomously scored items respectively. The model 

represents the first confirmatory-based IRT model to test the dimensionality of scale data. It is 

unique in that it relies on a priori theoretical considerations to test the relationship between the 

observed and latent variables. Advantages of the bifactor restriction leads to a major 

simplification of likelihood equations that (a) permits analysis of models with large numbers of 

group factors (e.g., domains), (b) permits conditional dependence among identified subsets of 

items, and (c) in many cases provides a more parsimonious factor solution than an unrestricted 

full-information item factor analysis (e.g., Bock & Aitkin, 1981).   

The simulation and applied data studies presented demonstrate some of the advantages 

(e.g., accurate trait & parameter estimates) that multidimensional IRT has to offer PRO research. 
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The simulation study showed several significant benefits of applying the bifactor model over 

Samejima’s (1969) unidimensional graded response model to data with varying degrees of 

multidimensionality. First, compared to the unidimensional model, the bifactor model yielded 

theta estimates that were more homogeneous across simulated data structures. Second, PSD 

estimates were found to be underestimated across all conditions for the unidimensional model. 

This will lead to premature conclusion of CAT testing sessions and a false sense of precision 

with which the underlying trait is estimated. Third, the larger empirical standard deviations for 

the unidimensional model lead to decreased statistical power for between group comparisons, 

and will require larger sample sizes than would be required if the theta values were estimated by 

the correct multidimensional model. Fourth, the mean log-likelihood values always indicated 

statistically significant improvement in fit for the bifactor model as compared to the 

unidimensional model, even when the data had only mild departure from unidimensionality. 

Overall, multidimensional models can be expected to provide more reliable estimates of the 

underlying impairment dimension and more accurate estimates of uncertainty, relative to their 

unidimensional counterparts.  

The real data examples illustrated how exploratory and confirmatory-based factor 

analytic IRT procedures can be used to model health outcomes scale data. Within the applied 

data examples, the bifactor model was found to provide acceptable model-data fit. For the PDSQ 

data, items reported varied loadings on the primary dimension and, in general, strong loadings on 

the group factor they were designed to measure. Analysis of the PTGI data indicated that the 

scale’s original factor structure did not provide the best fit to the data. Although, for the most 

part, emergent factors were similar to the original factors, the original factor structure reported 

by Tedeschi and Calhoun’s (1996) was less salient that those reported here using IRT-based 
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factor analysis. However, the finding of dissimilar factor structure in the current study compared 

to the original PTGI factor structure is not surprising given the heterogeneity of the samples (i.e., 

undergraduate college students vs. breast cancer survivors). 

 The fit of the bifactor model to the PTGI data indicated the presence of a general 

posttraumatic growth factor. Primary factor loadings exceeded 0.65, indicating a strong 

relationship between the observed variables and the general factor. Inspection of secondary 

factor loadings indicated high residual association among scale items. Testing the fit between 

competing bifactor models indicated that the PTGI cannot be considered a unidimensional 

model.  

 The results of the post-hoc simulation indicated that the PDSQ can be administered 

within the context of CAT and be expected to provide accurate trait estimates without 

administering all full scale or subscale items. A fixed SEM termination of .30 was found to be 

acceptable for the overall PDSQ scale. CAT trait estimates exhibited correlations with full scale 

trait estimates above the established cutoff criteria. For the PDSQ primary dimension, testing 

required the administration of roughly 22 items, or about 16% of the total test items. This clearly 

demonstrates the efficiency that CAT administration of the PDSQ has to offer to diagnostic 

evaluation setting. For example, a CAT-based primary dimension theta estimate could be used as 

a general screening test for depression in a primary care setting, and if positive (i.e., above a 

clinically relevant threshold), further adaptive testing of sub-domains (such as those associated 

with depression, including: mania, major depressive disorder) could be pursued. Furthermore, 

this finding supports previous research regarding the efficiency in which CAT has to offer across 

testing environments (e.g., Brown & Weiss, 1977; Fliege et al., 2005; McBride & Martin, 1983; 

Ware et al., 2000). Even testing for all sub-domains resulted in a 50%-60% reduction in test 
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items administered via CAT relative to traditional full-scale administration. Furthermore, it is 

very rare for clinicians in primary care settings to measure change in depression over time with 

their patients. As such, the empirical evidence of this research indicates that CAT could be a very 

efficient way to accomplish this goal. 

 There are a plethora of factors to consider when applying IRT to model mental health 

data. Despite their obvious desirability, clear-cut guidelines to identify the “best” IRT model to 

use for a given data set are elusive. This is largely attributed to the myriad of unique factors 

encountered when seeking to model any given dataset. In any given instance, these factors 

include: availability of the theoretical structure of the scale, sample size, and number of factors, 

among many. Nonetheless, initial consideration should be leveled at the theory used to guide 

scale development. This was the general approach to model the PTGI data above. That is, the 

availability of a priori information regarding the nature of the relationships between the 

observed and latent variables suggests that a confirmatory-based modeling approach is 

appropriate. Contrary, the absence of theory or the presence of uncertainty regarding the number 

of factors underlying the data hints at justification for conducting an exploratory-based analysis.  

 Aside from these considerations, additional research is needed to indicate the critical 

factors in selecting an appropriate IRT model. For instance, Riese et al. (in press) discuss several 

added benefits of including a primary dimension in addition to the theoretically a priori specified 

group factors in modeling health outcomes. However, areas in which empirical evidence is 

needed include (a) sample size, (b) the magnitude of the correlation between factors to be 

considered distinct dimensions, and (c) the accuracy of parameter and trait estimates for the 

different models under various conditions (e.g., non-normal data, sparse data, etc.). As such, 
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considerable research is needed to explore the applicability of multidimensional IRT models to 

various types of scale data.  

   The aim of this workbook was to provide researchers information on the added value of 

multidimensional IRT models over simpler unidimensional alternatives. As demonstrated, there 

are serious consequences associated with fitting unidimensional models to multidimensional 

data. Since most PRO measures are inherently multidimensional, investigators should use an 

appropriate multidimensional IRT model in the analysis and scoring of their data. The FI bifactor 

model represents one type of multidimensional IRT procedure capable of modeling data with a 

multidimensional structure. Notably, the use of the bifactor model as a method to describe health 

outcomes measurements has recently begun to emerge (e.g., Chen et al., 2006; Gibbons et al., 

2007; Riese et al. in press). As such, the bifactor model seems like a plausible psychometric 

modeling technique to test the theoretical structure of various types of PRO instruments.  Further 

research into the application of multidimensional IRT models to PRO data is strongly 

encouraged.  
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Appendix A 

MULTILOG Syntax for fitting Samejima’s (1969) Graded Response Model to PTGI (Tedeschi 
& Calhoun, 1996) 

 
MULTILOG Example  
Syntax for fitting SAMEJIMA'S (1969) GRADED MODEL to PTGI DATA (N=801) 
>PROBLEM RANDOM, INDIVIDUAL, NITEMS=21, NGROUP=1, 
         NEXAMINEES=801, DATA= PTGI.DAT'; 
>TEST    ALL, GRADED,  
         NC=(6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6); 
>SAVE; 
>LABELS  ITEMS=(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21),  
NAMES=('I1','I2','I3','I4','I5','I6','I7','I8','I9','I10','I11','I12','I13','Ii14','I15','I16', 
                  'I17','I18','I19','I20','I21'); 
>ESTIMATE NCYCLES=100; 
>END; 
6 
123456 
111111111111111111111 
222222222222222222222 
333333333333333333333 
444444444444444444444 
555555555555555555555 
666666666666666666666 
(21A1) 
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Appendix B 

POLYFACT Syntax for Conducting Unrestricted Full-Information Item Factor Analysis for 
Polytomous Data on PTGI (Tedeschi & Calhoun, 1996) 

 

>TITLE 
Unrestricted item factor analysis of PTGI data: 
Example Program    
>PROBLEM NITEM = 21, RESPONSE = 7, MAXCAT = 6; 
>RESPONSE X, 1, 2, 3, 4, 5, 6; 
>CATEGORY NCAT = (6(0)21); 
>FACTOR NFACT = 5, NROOT = 6, ROTATE = PROMAX; 
>FULL CYCLES = 40, QUAD = 3; 
>PRIOR; 
>INPUT NIDCH = 4, NFMT = 1, FILE= 'PTGI.DAT'; 
(4A1, T1, 21A1) 
>STOP 
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Appendix C 

POLYFACT Syntax for fitting Bifactor Model (Gibbons et al., 2007a) for Graded Response Data 
to PTGI (Tedeschi & Calhoun, 1996) 

 

>TITLE 
    Polytomous item bifactor analysis of the PTIG data: 
      Example Program  
>PROBLEM NITEM=21, RESPONSE=8, MAXCATEGORY=6, NOTPRESENTED; 
>RESPONSE X, 1, 2, 3, 4, 5, 6, 0; 
>CATEGORY NCAT = (6(0)21); 
>BIFACTOR NIGROUP = 5, LIST = 3, CYCLES = 6, QUAD = 7, 
  GROUPLIST = ((3 5 7 8 9 10 11), (1 2), (12 13 19 20), 
            (17 18), (4 6 14 15 16 21)); 
>SAVE PARM; 
>INPUT NIDCH = 4, NFMT = 1, FILE = 'PTGI.DAT'; 
 (4A1, T1, 35A1) 
>STOP 
>POLYCHORIC NDEC = 3; 
>SCORE LIST = 25, METHOD = 2; 
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Appendix D 

POLYFACT Syntax for conducting unrestricted FIFA to Jenkin’s Activity Scale (Jenkins et al., 
1972 

>TITLE 
DICHOTOMIZE JENKINS ACTIVITY SURVEY RESPONSES AND CONDUCT 
UNRESTRICTED FIFA  
>PROBLEM NITEMS=48, SELECT=32, RESPONSES=5, MAXCAT=3,NOTPRESENTED; 
>COMMENTS 
               This example analyzes 32 items selected from the 48-item version 
               of the Jenkins Activity Survey for Health Prediction, Form B  
               (Jenkins, Rosenman, & Zyzanski, 1972). The data are responses  
               of 600 men from central Finland drawn from a larger survey  
               sample. Most of the items are rated on three-point scales  
               representing little or no, occasional, or frequent occurrence of  
               the activity or behavior in question. The Category statement is used to 
               recode 0 responses to “1” and 1 and 2 responses to “2.” Wording in the 
               positive or negative direction varies from item to time as 
               follows (item numbers are those of the original pool of items  
               from which those of the present form was selected): 
 
    -Q156, -Q157, +Q158, -Q165, -Q166, -Q167, +Q247, +Q248, -Q249, -Q250, 
    +Q251, +Q252, +Q253, +Q254, +Q255, +Q256, +Q257, -Q258, -Q259, +Q260, 
    +Q261, +Q262, +Q263, +Q264, +Q265, -Q266, +Q267, +Q268, +Q269, +Q270,  
    +Q271, +Q272, -Q273, -Q274, -Q275, +Q276, +Q277, +Q278, -Q279, -Q280,  
    +Q307, +Q308, +Q309, +Q310, +Q311, -Q312, -Q313, -Q314. 
 
               The item parameters and factor scores will be saved in the  
               files EXAMPL4A.PAR and EXAMPL04.FSC, respectively. 
               Cases will be scored by EAP (Expected A Posteriori, or Bayes) 
               estimation with adaptive quadrature (Method 2).  
 
>NAMES Q156,Q157,Q158,Q165,Q166,Q167,Q247,Q248,Q249,Q250,Q251,Q252, 
                 Q253,Q254,Q255,Q256,Q257,Q258,Q259,Q260,Q261,Q262,Q263,Q264, 
                 Q265,Q266,Q267,Q268,Q269,Q270,Q271,Q272,Q273,Q274,Q275,Q276, 
                 Q277,Q278,Q279,Q280,Q307,Q308,Q309,Q310,Q311,Q312,Q313,Q314; 
>RESPONSE  '8','0','1','2','.'; 
>CATEGORY NCAT=(3(0)48),RECODE; 
                 CODE = '0', VALUE = (1(0)48); 
                 CODE = '1', VALUE = (2(0)48);        
                 CODE = '2', VALUE = (2(0)48); 
>SELECT  1, 2, 3, 5, 7, 11(1)14, 17(1)23, 25(1)30, 32, 33, 35, 36, 39(1)42, 47, 48; 
>TETRACHORIC LIST, NDEC = 3; 
>FACTOR NFAC=4, NROOT = 8, ROTATE = PROMAX; 
>FULL QUAD=3, CYCLES=40; 
>PRIOR; 
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>SCORE LIST=3, METHOD=2; 
>TECHNICAL PRECISION=0.005, ITLIMIT=10; 
>SAVE PARM, FSCORES ; 
>INPUT NIDCHAR=10, SCORES, FILE='EXAMPL04.DAT'; 
(10A1,T1,48A1) 
>STOP 
>KEY  002000220022222220022222202222220002220022222000; 
>SCORE  LIST=2,METHOD=2; 
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